point-e / pc.py
dooraven's picture
wip
f22c265
import random
from dataclasses import dataclass
from typing import BinaryIO, Dict, List, Optional, Union
import numpy as np
from .ply_util import write_ply
COLORS = frozenset(["R", "G", "B", "A"])
def preprocess(data, channel):
if channel in COLORS:
return np.round(data * 255.0)
return data
@dataclass
class PointCloud:
"""
An array of points sampled on a surface. Each point may have zero or more
channel attributes.
:param coords: an [N x 3] array of point coordinates.
:param channels: a dict mapping names to [N] arrays of channel values.
"""
coords: np.ndarray
channels: Dict[str, np.ndarray]
@classmethod
def load(cls, f: Union[str, BinaryIO]) -> "PointCloud":
"""
Load the point cloud from a .npz file.
"""
if isinstance(f, str):
with open(f, "rb") as reader:
return cls.load(reader)
else:
obj = np.load(f)
keys = list(obj.keys())
return PointCloud(
coords=obj["coords"],
channels={k: obj[k] for k in keys if k != "coords"},
)
def save(self, f: Union[str, BinaryIO]):
"""
Save the point cloud to a .npz file.
"""
if isinstance(f, str):
with open(f, "wb") as writer:
self.save(writer)
else:
np.savez(f, coords=self.coords, **self.channels)
def write_ply(self, raw_f: BinaryIO):
write_ply(
raw_f,
coords=self.coords,
rgb=(
np.stack([self.channels[x] for x in "RGB"], axis=1)
if all(x in self.channels for x in "RGB")
else None
),
)
def random_sample(self, num_points: int, **subsample_kwargs) -> "PointCloud":
"""
Sample a random subset of this PointCloud.
:param num_points: maximum number of points to sample.
:param subsample_kwargs: arguments to self.subsample().
:return: a reduced PointCloud, or self if num_points is not less than
the current number of points.
"""
if len(self.coords) <= num_points:
return self
indices = np.random.choice(len(self.coords), size=(num_points,), replace=False)
return self.subsample(indices, **subsample_kwargs)
def farthest_point_sample(
self, num_points: int, init_idx: Optional[int] = None, **subsample_kwargs
) -> "PointCloud":
"""
Sample a subset of the point cloud that is evenly distributed in space.
First, a random point is selected. Then each successive point is chosen
such that it is furthest from the currently selected points.
The time complexity of this operation is O(NM), where N is the original
number of points and M is the reduced number. Therefore, performance
can be improved by randomly subsampling points with random_sample()
before running farthest_point_sample().
:param num_points: maximum number of points to sample.
:param init_idx: if specified, the first point to sample.
:param subsample_kwargs: arguments to self.subsample().
:return: a reduced PointCloud, or self if num_points is not less than
the current number of points.
"""
if len(self.coords) <= num_points:
return self
init_idx = random.randrange(len(self.coords)) if init_idx is None else init_idx
indices = np.zeros([num_points], dtype=np.int64)
indices[0] = init_idx
sq_norms = np.sum(self.coords**2, axis=-1)
def compute_dists(idx: int):
# Utilize equality: ||A-B||^2 = ||A||^2 + ||B||^2 - 2*(A @ B).
return sq_norms + sq_norms[idx] - 2 * (self.coords @ self.coords[idx])
cur_dists = compute_dists(init_idx)
for i in range(1, num_points):
idx = np.argmax(cur_dists)
indices[i] = idx
cur_dists = np.minimum(cur_dists, compute_dists(idx))
return self.subsample(indices, **subsample_kwargs)
def subsample(self, indices: np.ndarray, average_neighbors: bool = False) -> "PointCloud":
if not average_neighbors:
return PointCloud(
coords=self.coords[indices],
channels={k: v[indices] for k, v in self.channels.items()},
)
new_coords = self.coords[indices]
neighbor_indices = PointCloud(coords=new_coords, channels={}).nearest_points(self.coords)
# Make sure every point points to itself, which might not
# be the case if points are duplicated or there is rounding
# error.
neighbor_indices[indices] = np.arange(len(indices))
new_channels = {}
for k, v in self.channels.items():
v_sum = np.zeros_like(v[: len(indices)])
v_count = np.zeros_like(v[: len(indices)])
np.add.at(v_sum, neighbor_indices, v)
np.add.at(v_count, neighbor_indices, 1)
new_channels[k] = v_sum / v_count
return PointCloud(coords=new_coords, channels=new_channels)
def select_channels(self, channel_names: List[str]) -> np.ndarray:
data = np.stack([preprocess(self.channels[name], name) for name in channel_names], axis=-1)
return data
def nearest_points(self, points: np.ndarray, batch_size: int = 16384) -> np.ndarray:
"""
For each point in another set of points, compute the point in this
pointcloud which is closest.
:param points: an [N x 3] array of points.
:param batch_size: the number of neighbor distances to compute at once.
Smaller values save memory, while larger values may
make the computation faster.
:return: an [N] array of indices into self.coords.
"""
norms = np.sum(self.coords**2, axis=-1)
all_indices = []
for i in range(0, len(points), batch_size):
batch = points[i : i + batch_size]
dists = norms + np.sum(batch**2, axis=-1)[:, None] - 2 * (batch @ self.coords.T)
all_indices.append(np.argmin(dists, axis=-1))
return np.concatenate(all_indices, axis=0)
def combine(self, other: "PointCloud") -> "PointCloud":
assert self.channels.keys() == other.channels.keys()
return PointCloud(
coords=np.concatenate([self.coords, other.coords], axis=0),
channels={
k: np.concatenate([v, other.channels[k]], axis=0) for k, v in self.channels.items()
},
)