Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,45 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
|
| 4 |
-
|
| 5 |
import torch.nn.functional as F
|
|
|
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
|
| 8 |
-
depth_estimator = pipeline(task="depth-estimation",
|
| 9 |
-
model="Intel/dpt-hybrid-midas")
|
| 10 |
|
| 11 |
def launch(input_image):
|
| 12 |
out = depth_estimator(input_image)
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
prediction = F.interpolate(
|
| 16 |
-
|
| 17 |
-
size=input_image.size[::-1],
|
| 18 |
mode="bicubic",
|
| 19 |
align_corners=False,
|
| 20 |
)
|
| 21 |
|
| 22 |
-
# normalize the prediction
|
| 23 |
output = prediction.squeeze().numpy()
|
| 24 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 25 |
depth = Image.fromarray(formatted)
|
| 26 |
return depth
|
| 27 |
|
| 28 |
-
iface = gr.Interface(
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
demo = gr.Blocks()
|
| 33 |
|
| 34 |
with demo:
|
| 35 |
gr.TabbedInterface(
|
| 36 |
[iface],
|
| 37 |
-
["
|
| 38 |
)
|
| 39 |
|
| 40 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import torch
|
|
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
+
from transformers import pipeline
|
| 8 |
|
| 9 |
+
depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-hybrid-midas")
|
|
|
|
| 10 |
|
| 11 |
def launch(input_image):
|
| 12 |
out = depth_estimator(input_image)
|
| 13 |
|
| 14 |
+
predicted_depth = torch.tensor(out["predicted_depth"])
|
| 15 |
+
|
| 16 |
+
if len(predicted_depth.shape) == 2: # Если двумерен, добавляем оси
|
| 17 |
+
predicted_depth = predicted_depth.unsqueeze(0).unsqueeze(0)
|
| 18 |
+
|
| 19 |
prediction = F.interpolate(
|
| 20 |
+
predicted_depth,
|
| 21 |
+
size=input_image.size[::-1], # Порядок: (ширина, высота)
|
| 22 |
mode="bicubic",
|
| 23 |
align_corners=False,
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
output = prediction.squeeze().numpy()
|
| 27 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 28 |
depth = Image.fromarray(formatted)
|
| 29 |
return depth
|
| 30 |
|
| 31 |
+
iface = gr.Interface(
|
| 32 |
+
launch,
|
| 33 |
+
inputs=gr.Image(type="pil"),
|
| 34 |
+
outputs=gr.Image(type="pil"),
|
| 35 |
+
)
|
| 36 |
|
| 37 |
demo = gr.Blocks()
|
| 38 |
|
| 39 |
with demo:
|
| 40 |
gr.TabbedInterface(
|
| 41 |
[iface],
|
| 42 |
+
["Depth Estimation Interface"],
|
| 43 |
)
|
| 44 |
|
| 45 |
+
demo.launch(debug=True)
|