|
import numpy as np |
|
import tqdm |
|
import os |
|
|
|
""" |
|
Preprocessing for the SO(2)/torus sampling and score computations, truncated infinite series are computed and then |
|
cached to memory, therefore the precomputation is only run the first time the repository is run on a machine |
|
""" |
|
|
|
|
|
def p(x, sigma, N=10): |
|
p_ = 0 |
|
for i in tqdm.trange(-N, N + 1): |
|
p_ += np.exp(-(x + 2 * np.pi * i) ** 2 / 2 / sigma ** 2) |
|
return p_ |
|
|
|
|
|
def grad(x, sigma, N=10): |
|
p_ = 0 |
|
for i in tqdm.trange(-N, N + 1): |
|
p_ += (x + 2 * np.pi * i) / sigma ** 2 * np.exp(-(x + 2 * np.pi * i) ** 2 / 2 / sigma ** 2) |
|
return p_ |
|
|
|
|
|
X_MIN, X_N = 1e-5, 5000 |
|
SIGMA_MIN, SIGMA_MAX, SIGMA_N = 3e-3, 2, 5000 |
|
|
|
x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi |
|
sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi |
|
|
|
if os.path.exists('.p.npy'): |
|
p_ = np.load('.p.npy') |
|
score_ = np.load('.score.npy') |
|
else: |
|
p_ = p(x, sigma[:, None], N=100) |
|
np.save('.p.npy', p_) |
|
|
|
score_ = grad(x, sigma[:, None], N=100) / p_ |
|
np.save('.score.npy', score_) |
|
|
|
|
|
def score(x, sigma): |
|
x = (x + np.pi) % (2 * np.pi) - np.pi |
|
sign = np.sign(x) |
|
x = np.log(np.abs(x) / np.pi) |
|
x = (x - np.log(X_MIN)) / (0 - np.log(X_MIN)) * X_N |
|
x = np.round(np.clip(x, 0, X_N)).astype(int) |
|
sigma = np.log(sigma / np.pi) |
|
sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N |
|
sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) |
|
return -sign * score_[sigma, x] |
|
|
|
|
|
def p(x, sigma): |
|
x = (x + np.pi) % (2 * np.pi) - np.pi |
|
x = np.log(np.abs(x) / np.pi) |
|
x = (x - np.log(X_MIN)) / (0 - np.log(X_MIN)) * X_N |
|
x = np.round(np.clip(x, 0, X_N)).astype(int) |
|
sigma = np.log(sigma / np.pi) |
|
sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N |
|
sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) |
|
return p_[sigma, x] |
|
|
|
|
|
def sample(sigma): |
|
out = sigma * np.random.randn(*sigma.shape) |
|
out = (out + np.pi) % (2 * np.pi) - np.pi |
|
return out |
|
|
|
|
|
score_norm_ = score( |
|
sample(sigma[None].repeat(10000, 0).flatten()), |
|
sigma[None].repeat(10000, 0).flatten() |
|
).reshape(10000, -1) |
|
score_norm_ = (score_norm_ ** 2).mean(0) |
|
|
|
|
|
def score_norm(sigma): |
|
sigma = np.log(sigma / np.pi) |
|
sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N |
|
sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) |
|
return score_norm_[sigma] |
|
|