|
import copy |
|
import math |
|
import os |
|
from functools import partial |
|
|
|
import wandb |
|
import torch |
|
torch.multiprocessing.set_sharing_strategy('file_system') |
|
|
|
import resource |
|
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) |
|
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1])) |
|
|
|
import yaml |
|
|
|
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl |
|
from datasets.pdbbind import construct_loader |
|
from utils.parsing import parse_train_args |
|
from utils.training import train_epoch, test_epoch, loss_function, inference_epoch |
|
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model, ExponentialMovingAverage |
|
|
|
|
|
def train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir): |
|
best_val_loss = math.inf |
|
best_val_inference_value = math.inf if args.inference_earlystop_goal == 'min' else 0 |
|
best_epoch = 0 |
|
best_val_inference_epoch = 0 |
|
loss_fn = partial(loss_function, tr_weight=args.tr_weight, rot_weight=args.rot_weight, |
|
tor_weight=args.tor_weight, no_torsion=args.no_torsion) |
|
|
|
print("Starting training...") |
|
for epoch in range(args.n_epochs): |
|
if epoch % 5 == 0: print("Run name: ", args.run_name) |
|
logs = {} |
|
train_losses = train_epoch(model, train_loader, optimizer, device, t_to_sigma, loss_fn, ema_weights) |
|
print("Epoch {}: Training loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f}" |
|
.format(epoch, train_losses['loss'], train_losses['tr_loss'], train_losses['rot_loss'], |
|
train_losses['tor_loss'])) |
|
|
|
ema_weights.store(model.parameters()) |
|
if args.use_ema: ema_weights.copy_to(model.parameters()) |
|
val_losses = test_epoch(model, val_loader, device, t_to_sigma, loss_fn, args.test_sigma_intervals) |
|
print("Epoch {}: Validation loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f}" |
|
.format(epoch, val_losses['loss'], val_losses['tr_loss'], val_losses['rot_loss'], val_losses['tor_loss'])) |
|
|
|
if args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0: |
|
inf_metrics = inference_epoch(model, val_loader.dataset.complex_graphs[:args.num_inference_complexes], device, t_to_sigma, args) |
|
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f}" |
|
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'])) |
|
logs.update({'valinf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1) |
|
|
|
if not args.use_ema: ema_weights.copy_to(model.parameters()) |
|
ema_state_dict = copy.deepcopy(model.module.state_dict() if device.type == 'cuda' else model.state_dict()) |
|
ema_weights.restore(model.parameters()) |
|
|
|
if args.wandb: |
|
logs.update({'train_' + k: v for k, v in train_losses.items()}) |
|
logs.update({'val_' + k: v for k, v in val_losses.items()}) |
|
logs['current_lr'] = optimizer.param_groups[0]['lr'] |
|
wandb.log(logs, step=epoch + 1) |
|
|
|
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict() |
|
if args.inference_earlystop_metric in logs.keys() and \ |
|
(args.inference_earlystop_goal == 'min' and logs[args.inference_earlystop_metric] <= best_val_inference_value or |
|
args.inference_earlystop_goal == 'max' and logs[args.inference_earlystop_metric] >= best_val_inference_value): |
|
best_val_inference_value = logs[args.inference_earlystop_metric] |
|
best_val_inference_epoch = epoch |
|
torch.save(state_dict, os.path.join(run_dir, 'best_inference_epoch_model.pt')) |
|
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_inference_epoch_model.pt')) |
|
if val_losses['loss'] <= best_val_loss: |
|
best_val_loss = val_losses['loss'] |
|
best_epoch = epoch |
|
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt')) |
|
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_model.pt')) |
|
|
|
if scheduler: |
|
if args.val_inference_freq is not None: |
|
scheduler.step(best_val_inference_value) |
|
else: |
|
scheduler.step(val_losses['loss']) |
|
|
|
torch.save({ |
|
'epoch': epoch, |
|
'model': state_dict, |
|
'optimizer': optimizer.state_dict(), |
|
'ema_weights': ema_weights.state_dict(), |
|
}, os.path.join(run_dir, 'last_model.pt')) |
|
|
|
print("Best Validation Loss {} on Epoch {}".format(best_val_loss, best_epoch)) |
|
print("Best inference metric {} on Epoch {}".format(best_val_inference_value, best_val_inference_epoch)) |
|
|
|
|
|
def main_function(): |
|
args = parse_train_args() |
|
if args.config: |
|
config_dict = yaml.load(args.config, Loader=yaml.FullLoader) |
|
arg_dict = args.__dict__ |
|
for key, value in config_dict.items(): |
|
if isinstance(value, list): |
|
for v in value: |
|
arg_dict[key].append(v) |
|
else: |
|
arg_dict[key] = value |
|
args.config = args.config.name |
|
assert (args.inference_earlystop_goal == 'max' or args.inference_earlystop_goal == 'min') |
|
if args.val_inference_freq is not None and args.scheduler is not None: |
|
assert (args.scheduler_patience > args.val_inference_freq) |
|
if args.cudnn_benchmark: |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
t_to_sigma = partial(t_to_sigma_compl, args=args) |
|
train_loader, val_loader = construct_loader(args, t_to_sigma) |
|
|
|
model = get_model(args, device, t_to_sigma=t_to_sigma) |
|
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.inference_earlystop_goal if args.val_inference_freq is not None else 'min') |
|
ema_weights = ExponentialMovingAverage(model.parameters(),decay=args.ema_rate) |
|
|
|
if args.restart_dir: |
|
try: |
|
dict = torch.load(f'{args.restart_dir}/last_model.pt', map_location=torch.device('cpu')) |
|
if args.restart_lr is not None: dict['optimizer']['param_groups'][0]['lr'] = args.restart_lr |
|
optimizer.load_state_dict(dict['optimizer']) |
|
model.module.load_state_dict(dict['model'], strict=True) |
|
if hasattr(args, 'ema_rate'): |
|
ema_weights.load_state_dict(dict['ema_weights'], device=device) |
|
print("Restarting from epoch", dict['epoch']) |
|
except Exception as e: |
|
print("Exception", e) |
|
dict = torch.load(f'{args.restart_dir}/best_model.pt', map_location=torch.device('cpu')) |
|
model.module.load_state_dict(dict, strict=True) |
|
print("Due to exception had to take the best epoch and no optimiser") |
|
|
|
numel = sum([p.numel() for p in model.parameters()]) |
|
print('Model with', numel, 'parameters') |
|
|
|
if args.wandb: |
|
wandb.init( |
|
entity='entity', |
|
settings=wandb.Settings(start_method="fork"), |
|
project=args.project, |
|
name=args.run_name, |
|
config=args |
|
) |
|
wandb.log({'numel': numel}) |
|
|
|
|
|
run_dir = os.path.join(args.log_dir, args.run_name) |
|
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml') |
|
save_yaml_file(yaml_file_name, args.__dict__) |
|
args.device = device |
|
|
|
train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir) |
|
|
|
|
|
if __name__ == '__main__': |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
main_function() |