Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,15 @@ import streamlit as st
|
|
2 |
import os
|
3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
|
10 |
from langchain_core.runnables import RunnablePassthrough
|
11 |
-
from
|
12 |
import Raptor
|
13 |
-
from io import StringIO
|
14 |
-
from qdrant_client import QdrantClient
|
15 |
-
from qdrant_client.models import Distance, VectorParams
|
16 |
|
17 |
page = st.title("Chat with AskUSTH")
|
18 |
|
@@ -52,50 +50,6 @@ def get_embedding_model():
|
|
52 |
if "embd" not in st.session_state:
|
53 |
st.session_state.embd = get_embedding_model()
|
54 |
|
55 |
-
@st.cache_resource
|
56 |
-
def load_chromadb(collection_name):
|
57 |
-
client = QdrantClient(
|
58 |
-
url="https://da9fadd2-dc5a-4481-ac79-4e2677a2354b.europe-west3-0.gcp.cloud.qdrant.io",
|
59 |
-
api_key="X_-IVToBM07Mot4Mmzg5xNjYzc1DlIgl0VQDUNmGhI_Z-WA5FJ2ETA"
|
60 |
-
)
|
61 |
-
|
62 |
-
client.recreate_collection(
|
63 |
-
collection_name=collection_name,
|
64 |
-
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
65 |
-
)
|
66 |
-
db = QdrantVectorStore(
|
67 |
-
client=client,
|
68 |
-
collection_name=collection_name,
|
69 |
-
embedding=st.session_state.embd,
|
70 |
-
)
|
71 |
-
return db
|
72 |
-
|
73 |
-
@st.cache_resource
|
74 |
-
def update_chromadb(collection_name):
|
75 |
-
client = QdrantClient(
|
76 |
-
url="https://da9fadd2-dc5a-4481-ac79-4e2677a2354b.europe-west3-0.gcp.cloud.qdrant.io",
|
77 |
-
api_key="X_-IVToBM07Mot4Mmzg5xNjYzc1DlIgl0VQDUNmGhI_Z-WA5FJ2ETA"
|
78 |
-
)
|
79 |
-
|
80 |
-
try:
|
81 |
-
client.delete_collection(collection_name=collection_name)
|
82 |
-
except Exception as e:
|
83 |
-
print(f"Warning: {e}")
|
84 |
-
|
85 |
-
client.recreate_collection(
|
86 |
-
collection_name=collection_name,
|
87 |
-
vectors_config=VectorParams(size=768, distance=Distance.COSINE)
|
88 |
-
)
|
89 |
-
db = QdrantVectorStore(
|
90 |
-
client=client,
|
91 |
-
collection_name=collection_name,
|
92 |
-
embedding=st.session_state.embd,
|
93 |
-
)
|
94 |
-
return db
|
95 |
-
|
96 |
-
if "vector_store" not in st.session_state:
|
97 |
-
st.session_state.vector_store = load_chromadb("data")
|
98 |
-
|
99 |
if "model" not in st.session_state:
|
100 |
st.session_state.model = None
|
101 |
|
@@ -123,12 +77,64 @@ if st.session_state.gemini_api is None:
|
|
123 |
if st.session_state.gemini_api and st.session_state.model is None:
|
124 |
st.session_state.model = get_chat_google_model(st.session_state.gemini_api)
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
def format_docs(docs):
|
127 |
return "\n\n".join(doc.page_content for doc in docs)
|
128 |
|
129 |
@st.cache_resource
|
130 |
-
def
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
template = """
|
133 |
Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
|
134 |
Hãy trả lời câu hỏi chính xác, tập trung vào thông tin liên quan đến câu hỏi. \n
|
@@ -139,93 +145,24 @@ def rag_chain(_model, _vectorstore):
|
|
139 |
{question}
|
140 |
"""
|
141 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
142 |
-
|
143 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
144 |
| prompt
|
145 |
| _model
|
146 |
| StrOutputParser()
|
147 |
)
|
148 |
-
return
|
149 |
-
|
150 |
-
if st.session_state.model is not None and st.session_state.vector_store is not None:
|
151 |
-
st.session_state.rag = rag_chain(st.session_state.model, st.session_state.vector_store)
|
152 |
-
|
153 |
-
if "new_docs" not in st.session_state:
|
154 |
-
st.session_state.new_docs = False
|
155 |
-
|
156 |
-
with st.sidebar:
|
157 |
-
uploaded_files = st.file_uploader("Chọn file txt", accept_multiple_files=True, type=["txt"])
|
158 |
-
if st.session_state.model:
|
159 |
-
documents = []
|
160 |
-
uploaded_file_names = set()
|
161 |
-
if uploaded_files:
|
162 |
-
for uploaded_file in uploaded_files:
|
163 |
-
uploaded_file_names.add(uploaded_file.name)
|
164 |
-
if uploaded_file_names != st.session_state.uploaded_files and not st.session_state.new_docs:
|
165 |
-
st.session_state.uploaded_files = uploaded_file_names
|
166 |
-
st.session_state.new_docs = True
|
167 |
-
if uploaded_files:
|
168 |
-
for uploaded_file in uploaded_files:
|
169 |
-
stringio=StringIO(uploaded_file.getvalue().decode('utf-8'))
|
170 |
-
read_data=str(stringio.read())
|
171 |
-
documents.append(read_data)
|
172 |
-
|
173 |
-
def update_rag_chain(_model, _embd, _vectorstore, docs_texts):
|
174 |
-
results = Raptor.recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
175 |
-
all_texts = docs_texts.copy()
|
176 |
-
for level in sorted(results.keys()):
|
177 |
-
summaries = results[level][1]["summaries"].tolist()
|
178 |
-
all_texts.extend(summaries)
|
179 |
-
_vectorstore.add_texts(texts=all_texts)
|
180 |
-
rag = rag_chain(_model, _vectorstore)
|
181 |
-
return rag
|
182 |
-
|
183 |
-
def reset_rag_chain(_model, _vectorstore):
|
184 |
-
rag = rag_chain(_model, _vectorstore)
|
185 |
-
return rag
|
186 |
-
|
187 |
-
if "query_router" not in st.session_state:
|
188 |
-
st.session_state.query_router = None
|
189 |
-
|
190 |
-
@st.cache_resource
|
191 |
-
def query_router(_model):
|
192 |
-
mess = ChatPromptTemplate.from_messages(
|
193 |
-
[
|
194 |
-
(
|
195 |
-
"system",
|
196 |
-
"""Bạn là một chatbot hỗ trợ giải đáp về đại học, nhiệm vụ của bạn là phân loại câu hỏi.
|
197 |
-
Nếu câu hỏi về đại học thì trả về 'university', nếu không liên quan tới tuyển sinh và sinh viên thì trả về 'other'.
|
198 |
-
Bắt buộc Kết quả chỉ trả về với một trong hai lựa chọn trên.
|
199 |
-
Không được trả lời thêm bất kỳ thông tin nào khác.""",
|
200 |
-
),
|
201 |
-
("human", "{input}"),
|
202 |
-
]
|
203 |
-
)
|
204 |
-
chain = mess | _model
|
205 |
-
return chain
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
def update_vectorstore(_model, _embd, _vectorstore, docs):
|
212 |
-
docs_texts = [d for d in docs]
|
213 |
-
st.session_state.rag = update_rag_chain(_model, _embd, _vectorstore, docs_texts)
|
214 |
st.rerun()
|
215 |
-
|
216 |
-
@st.dialog("Reset DB")
|
217 |
-
def reset_vectorstore(_model, _vectorstore):
|
218 |
-
st.session_state.rag = reset_rag_chain(_model, _vectorstore)
|
219 |
-
st.rerun()
|
220 |
|
221 |
-
if st.session_state.
|
222 |
-
st.session_state.
|
223 |
-
|
224 |
-
|
225 |
-
update_vectorstore(st.session_state.model, st.session_state.embd, st.session_state.vector_store, documents)
|
226 |
-
else:
|
227 |
-
reset_vectorstore(st.session_state.model, st.session_state.vector_store)
|
228 |
-
|
229 |
if st.session_state.model is not None:
|
230 |
if st.session_state.llm is None:
|
231 |
mess = ChatPromptTemplate.from_messages(
|
@@ -256,16 +193,12 @@ if st.session_state.model is not None:
|
|
256 |
st.write(prompt)
|
257 |
|
258 |
with st.chat_message("assistant"):
|
259 |
-
|
260 |
-
switch = router.content
|
261 |
-
if "university" in switch:
|
262 |
respone = st.session_state.rag.invoke(prompt)
|
263 |
-
|
264 |
-
st.write(f_response)
|
265 |
else:
|
266 |
-
|
267 |
-
|
268 |
-
st.write(
|
269 |
|
270 |
-
st.session_state.chat_history.append({"role": "assistant", "content":
|
271 |
-
|
|
|
2 |
import os
|
3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
|
11 |
from langchain_core.runnables import RunnablePassthrough
|
12 |
+
from langchain_chroma import Chroma
|
13 |
import Raptor
|
|
|
|
|
|
|
14 |
|
15 |
page = st.title("Chat with AskUSTH")
|
16 |
|
|
|
50 |
if "embd" not in st.session_state:
|
51 |
st.session_state.embd = get_embedding_model()
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if "model" not in st.session_state:
|
54 |
st.session_state.model = None
|
55 |
|
|
|
77 |
if st.session_state.gemini_api and st.session_state.model is None:
|
78 |
st.session_state.model = get_chat_google_model(st.session_state.gemini_api)
|
79 |
|
80 |
+
if st.session_state.save_dir is None:
|
81 |
+
save_dir = "./Documents"
|
82 |
+
if not os.path.exists(save_dir):
|
83 |
+
os.makedirs(save_dir)
|
84 |
+
st.session_state.save_dir = save_dir
|
85 |
+
|
86 |
+
def load_txt(file_path):
|
87 |
+
loader_sv = TextLoader(file_path=file_path, encoding="utf-8")
|
88 |
+
doc = loader_sv.load()
|
89 |
+
return doc
|
90 |
+
|
91 |
+
with st.sidebar:
|
92 |
+
uploaded_files = st.file_uploader("Chọn file txt", accept_multiple_files=True, type=["txt"])
|
93 |
+
if st.session_state.gemini_api:
|
94 |
+
if uploaded_files:
|
95 |
+
documents = []
|
96 |
+
uploaded_file_names = set()
|
97 |
+
new_docs = False
|
98 |
+
for uploaded_file in uploaded_files:
|
99 |
+
uploaded_file_names.add(uploaded_file.name)
|
100 |
+
if uploaded_file.name not in st.session_state.uploaded_files:
|
101 |
+
file_path = os.path.join(st.session_state.save_dir, uploaded_file.name)
|
102 |
+
with open(file_path, mode='wb') as w:
|
103 |
+
w.write(uploaded_file.getvalue())
|
104 |
+
else:
|
105 |
+
continue
|
106 |
+
|
107 |
+
new_docs = True
|
108 |
+
|
109 |
+
doc = load_txt(file_path)
|
110 |
+
|
111 |
+
documents.extend([*doc])
|
112 |
+
|
113 |
+
if new_docs:
|
114 |
+
st.session_state.uploaded_files = uploaded_file_names
|
115 |
+
st.session_state.rag = None
|
116 |
+
else:
|
117 |
+
st.session_state.uploaded_files = set()
|
118 |
+
st.session_state.rag = None
|
119 |
+
|
120 |
def format_docs(docs):
|
121 |
return "\n\n".join(doc.page_content for doc in docs)
|
122 |
|
123 |
@st.cache_resource
|
124 |
+
def compute_rag_chain(_model, _embd, docs_texts):
|
125 |
+
results = Raptor.recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
126 |
+
all_texts = docs_texts.copy()
|
127 |
+
i = 0
|
128 |
+
for level in sorted(results.keys()):
|
129 |
+
summaries = results[level][1]["summaries"].tolist()
|
130 |
+
all_texts.extend(summaries)
|
131 |
+
print(f"summary {i} -------------------------------------------------")
|
132 |
+
print(summaries)
|
133 |
+
i += 1
|
134 |
+
print("all_texts ______________________________________")
|
135 |
+
print(all_texts)
|
136 |
+
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
137 |
+
retriever = vectorstore.as_retriever()
|
138 |
template = """
|
139 |
Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
|
140 |
Hãy trả lời câu hỏi chính xác, tập trung vào thông tin liên quan đến câu hỏi. \n
|
|
|
145 |
{question}
|
146 |
"""
|
147 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
148 |
+
rag_chain = (
|
149 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
150 |
| prompt
|
151 |
| _model
|
152 |
| StrOutputParser()
|
153 |
)
|
154 |
+
return rag_chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
@st.dialog("Setup RAG")
|
157 |
+
def load_rag():
|
158 |
+
docs_texts = [d.page_content for d in documents]
|
159 |
+
st.session_state.rag = compute_rag_chain(st.session_state.model, st.session_state.embd, docs_texts)
|
|
|
|
|
|
|
160 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
if st.session_state.uploaded_files and st.session_state.model is not None:
|
163 |
+
if st.session_state.rag is None:
|
164 |
+
load_rag()
|
165 |
+
|
|
|
|
|
|
|
|
|
166 |
if st.session_state.model is not None:
|
167 |
if st.session_state.llm is None:
|
168 |
mess = ChatPromptTemplate.from_messages(
|
|
|
193 |
st.write(prompt)
|
194 |
|
195 |
with st.chat_message("assistant"):
|
196 |
+
if st.session_state.rag is not None:
|
|
|
|
|
197 |
respone = st.session_state.rag.invoke(prompt)
|
198 |
+
st.write(respone)
|
|
|
199 |
else:
|
200 |
+
ans = st.session_state.llm.invoke(prompt)
|
201 |
+
respone = ans.content
|
202 |
+
st.write(respone)
|
203 |
|
204 |
+
st.session_state.chat_history.append({"role": "assistant", "content": respone})
|
|