SearchingFace / dataset_recommender.py
nkasmanoff's picture
Update dataset_recommender.py
bfc72f4
raw
history blame
2.56 kB
from langchain.chains import RetrievalQA
from vectorize_dataset import load_descriptions_data, create_db
from helpers import clean_up_tags, get_dataset_metadata, get_dataset_readme
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
class DatasetRecommender:
def __init__(self, dataset = 'nkasmanoff/huggingface-datasets' ,
llm_backbone = ChatOpenAI(),
embeddings_backbone = OpenAIEmbeddings()):
self.dataset = dataset
self.llm_backbone = llm_backbone
self.embeddings_backbone = embeddings_backbone
self.hf_df = load_descriptions_data(dataset=self.dataset)
self.db = create_db(self.hf_df, self.embeddings_backbone)
self.datasets_url_base = "https://huggingface.co/datasets/"
# expose this index in a retriever interface
self.retriever = self.db.as_retriever(search_type="similarity", search_kwargs={"k":2})
# create a chain to answer questions
self.qa = RetrievalQA.from_chain_type(
llm=self.llm_backbone, chain_type="stuff", retriever=self.retriever, return_source_documents=True)
def recommend_based_on_text(self, query):
result = self.qa({"query": query})
response_text = result['result']
source_documents = result['source_documents']
linked_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in source_documents]
return {'message': response_text, 'datasets': linked_datasets}
def get_similar_datasets(self, query_url):
if self.dataset == "nkasmanoff/hf-dataset-cards":
retrieved_metadata = get_dataset_readme(query_url)
if 'README' not in retrieved_metadata:
return {'error': 'no description found for this dataset.'}
cleaned_description = retrieved_metadata['README']
else:
retrieved_metadata = get_dataset_metadata(query_url)
if 'description' not in retrieved_metadata:
return {'error': 'no description found for this dataset.'}
cleaned_description = retrieved_metadata['description'] + clean_up_tags(retrieved_metadata['tags'])
similar_documents = self.db.similarity_search(cleaned_description)
similar_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in similar_documents if x.metadata['id'] not in query_url]
return {'datasets': similar_datasets}