smart-moderator / app.py
nixaut-codelabs's picture
Update app.py
478bcd0 verified
raw
history blame
22.8 kB
import os
import uuid
import time
import threading
import io
from datetime import datetime, timedelta
from collections import defaultdict, deque
from flask import Flask, request, jsonify, render_template
from detoxify import Detoxify
import numpy as np
import requests
from PIL import Image
from tensorflow.keras.models import load_model
app = Flask(__name__, static_folder='static', template_folder='templates')
app.logger.setLevel('INFO')
API_KEY = os.environ.get('API_KEY')
if not API_KEY:
raise ValueError("API_KEY environment variable not set.")
print("Loading Detoxify model for text moderation...")
detoxify_model = Detoxify('multilingual')
print("Detoxify model loaded successfully.")
MODEL_PATH = 'keras_model.h5'
LABELS_PATH = 'labels.txt'
image_model = None
image_labels = None
try:
print("Loading Teachable Machine model for image moderation...")
image_model = load_model(MODEL_PATH, compile=False)
with open(LABELS_PATH, 'r') as f:
image_labels = [line.strip().split(' ')[1] for line in f.readlines()]
print("Image moderation model loaded successfully.")
except Exception as e:
app.logger.warning(f"Could not load image moderation model. Image moderation will be disabled. Error: {e}")
image_model = None
image_labels = None
request_durations = deque(maxlen=100)
request_timestamps = deque(maxlen=1000)
daily_requests = defaultdict(int)
concurrent_requests = 0
concurrent_requests_lock = threading.Lock()
def is_url(string):
return isinstance(string, str) and string.strip().startswith(('http://', 'https://'))
def classify_image(image_bytes):
if not image_model or not image_labels:
raise RuntimeError("Image moderation model is not available.")
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image = image.resize((224, 224))
image_array = np.asarray(image)
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
data[0] = normalized_image_array
prediction = image_model.predict(data)
scores = {label.lower(): float(score) for label, score in zip(image_labels, prediction[0])}
return scores
def transform_text_predictions(prediction_dict):
category_keys = [
"toxicity", "severe_toxicity", "obscene", "threat",
"insult", "identity_attack", "sexual_explicit"
]
scores = {key: float(prediction_dict.get(key, 0.0)) for key in category_keys}
threshold = 0.5
categories = {key: (scores[key] > threshold) for key in category_keys}
flagged = any(categories.values())
return flagged, categories, scores
def transform_image_predictions(prediction_dict):
nsfw_score = prediction_dict.get('nsfw', 0.0)
categories = {
"sexual": nsfw_score > 0.8,
"hate": False,
"harassment": False,
"self-harm": False,
"sexual/minors": nsfw_score > 0.9,
"hate/threatening": False,
"violence/graphic": False,
"self-harm/intent": False,
"self-harm/instructions": False,
"harassment/threatening": False,
"violence": False,
}
category_scores = {
"sexual": nsfw_score,
"hate": 0.0,
"harassment": 0.0,
"self-harm": 0.0,
"sexual/minors": nsfw_score,
"hate/threatening": 0.0,
"violence/graphic": 0.0,
"self-harm/intent": 0.0,
"self-harm/instructions": 0.0,
"harassment/threatening": 0.0,
"violence": 0.0,
}
flagged = any(categories.values())
return flagged, categories, category_scores
def track_request_metrics(start_time):
duration = time.time() - start_time
request_durations.append(duration)
request_timestamps.append(datetime.now())
today = datetime.now().strftime("%Y-%m-%d")
daily_requests[today] += 1
def get_performance_metrics():
with concurrent_requests_lock:
current_concurrent = concurrent_requests
avg_request_time = sum(request_durations) / len(request_durations) if request_durations else 0
peak_request_time = max(request_durations) if request_durations else 0
now = datetime.now()
one_minute_ago = now - timedelta(seconds=60)
requests_last_minute = sum(1 for ts in request_timestamps if ts > one_minute_ago)
today_requests = daily_requests.get(now.strftime("%Y-%m-%d"), 0)
last_7_days = []
for i in range(7):
date = (now - timedelta(days=i)).strftime("%Y-%m-%d")
last_7_days.append({
"date": date,
"requests": daily_requests.get(date, 0),
})
return {
"avg_request_time_ms": avg_request_time * 1000,
"peak_request_time_ms": peak_request_time * 1000,
"requests_per_minute": requests_last_minute,
"concurrent_requests": current_concurrent,
"today_requests": today_requests,
"last_7_days": last_7_days
}
@app.route('/')
def home():
return render_template('index.html')
@app.route('/v1/moderations', methods=['POST'])
def moderations():
global concurrent_requests
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith("Bearer ") or auth_header.split(" ")[1] != API_KEY:
return jsonify({"error": {"message": "Incorrect API key provided.", "type": "invalid_request_error", "code": "invalid_api_key"}}), 401
with concurrent_requests_lock:
concurrent_requests += 1
start_time = time.time()
try:
data = request.get_json()
if not data:
return jsonify({"error": "Invalid JSON body"}), 400
raw_input = data.get('input')
if raw_input is None:
return jsonify({"error": "'input' field is required"}), 400
inputs = [raw_input] if isinstance(raw_input, str) else raw_input
if not isinstance(inputs, list):
return jsonify({"error": "'input' must be a string or a list of strings/URLs"}), 400
results = []
texts_to_process = []
text_indices = []
for i, item in enumerate(inputs):
if is_url(item):
try:
response = requests.get(item, timeout=10)
response.raise_for_status()
image_scores = classify_image(response.content)
flagged, categories, category_scores = transform_image_predictions(image_scores)
results.append((i, {"flagged": flagged, "categories": categories, "category_scores": category_scores}))
except requests.RequestException as e:
results.append((i, {"error": f"Failed to download image: {e}"}))
except Exception as e:
results.append((i, {"error": f"Failed to process image: {e}"}))
elif isinstance(item, str):
texts_to_process.append(item)
text_indices.append(i)
else:
results.append((i, {"error": "Invalid input type. Must be a string or URL."}))
if texts_to_process:
text_predictions = detoxify_model.predict(texts_to_process)
for i, original_index in enumerate(text_indices):
single_prediction = {key: value[i] for key, value in text_predictions.items()}
flagged, categories, category_scores = transform_text_predictions(single_prediction)
results.append((original_index, {"flagged": flagged, "categories": categories, "category_scores": category_scores}))
results.sort(key=lambda x: x[0])
final_results = [res for _, res in results]
response_data = {
"id": "modr-" + uuid.uuid4().hex[:24],
"model": "smart-moderator-multimodal-v1",
"results": final_results
}
return jsonify(response_data)
except Exception as e:
app.logger.error(f"An error occurred: {e}", exc_info=True)
return jsonify({"error": "An internal server error occurred."}), 500
finally:
track_request_metrics(start_time)
with concurrent_requests_lock:
concurrent_requests -= 1
@app.route('/v1/metrics', methods=['GET'])
def metrics():
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith("Bearer ") or auth_header.split(" ")[1] != API_KEY:
return jsonify({"error": "Unauthorized"}), 401
return jsonify(get_performance_metrics())
def create_app_structure():
os.makedirs('templates', exist_ok=True)
os.makedirs('static', exist_ok=True)
index_html_content = r'''
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Smart Moderator API</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
<script>
tailwind.config = { darkMode: 'class' }
</script>
<style>
.gradient-bg { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); }
.dark .gradient-bg { background: linear-gradient(135deg, #1e3a8a 0%, #4c1d95 100%); }
.loading-spinner { border-top-color: #3b82f6; animation: spinner 1.5s linear infinite; }
@keyframes spinner { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } }
</style>
</head>
<body class="bg-gray-50 dark:bg-gray-900 text-gray-900 dark:text-gray-100 min-h-screen font-sans">
<header class="gradient-bg text-white shadow-lg">
<div class="container mx-auto px-4 py-6 flex justify-between items-center">
<div class="flex items-center space-x-3">
<div class="w-10 h-10 rounded-full bg-white flex items-center justify-center">
<i class="fas fa-shield-alt text-indigo-600 text-xl"></i>
</div>
<h1 class="text-2xl font-bold">Smart Moderator</h1>
</div>
<div>
<button id="darkModeToggle" class="bg-white/20 p-2 rounded-lg hover:bg-white/30 transition">
<i class="fas fa-moon dark:hidden"></i>
<i class="fas fa-sun hidden dark:inline"></i>
</button>
</div>
</div>
</header>
<main class="container mx-auto px-4 py-8">
<section class="mb-12">
<h2 class="text-2xl font-bold mb-6 flex items-center"><i class="fas fa-tachometer-alt mr-3 text-indigo-500"></i>Performance Metrics</h2>
<div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-4 gap-6 mb-8">
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6"><p class="text-gray-500 dark:text-gray-400 text-sm">Avg. Response</p><p class="text-2xl font-bold" id="avgResponseTime">0ms</p></div>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6"><p class="text-gray-500 dark:text-gray-400 text-sm">Requests / Minute</p><p class="text-2xl font-bold" id="requestsPerMinute">0</p></div>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6"><p class="text-gray-500 dark:text-gray-400 text-sm">Peak Response</p><p class="text-2xl font-bold" id="peakResponseTime">0ms</p></div>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6"><p class="text-gray-500 dark:text-gray-400 text-sm">Today's Requests</p><p class="text-2xl font-bold" id="todayRequests">0</p></div>
</div>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6">
<h3 class="text-lg font-semibold mb-4">Last 7 Days Activity</h3>
<div class="h-64"><canvas id="activityChart"></canvas></div>
</div>
</section>
<section class="mb-12">
<h2 class="text-2xl font-bold mb-6 flex items-center"><i class="fas fa-vial mr-3 text-indigo-500"></i>API Tester</h2>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6">
<form id="apiTestForm">
<div class="mb-4"><label class="block text-sm font-medium mb-2" for="apiKey">API Key</label><input type="password" id="apiKey" class="w-full px-4 py-2 rounded-lg border bg-white dark:bg-gray-700 focus:outline-none focus:ring-2 focus:ring-indigo-500" placeholder="Enter your API key"></div>
<div class="mb-4"><label class="block text-sm font-medium mb-2">Input (Text or Image URL)</label><textarea id="apiInput" class="w-full px-4 py-2 rounded-lg border bg-white dark:bg-gray-700 focus:outline-none focus:ring-2 focus:ring-indigo-500" rows="4" placeholder="Enter text to moderate, or a public image URL. For multiple items, separate them with a new line."></textarea></div>
<button type="submit" id="analyzeBtn" class="bg-indigo-600 hover:bg-indigo-700 text-white font-medium py-2 px-6 rounded-lg transition"><i class="fas fa-search mr-2"></i>Analyze</button>
</form>
</div>
</section>
<section id="resultsSection" class="hidden">
<h2 class="text-2xl font-bold mb-6 flex items-center"><i class="fas fa-clipboard-check mr-3 text-indigo-500"></i>Analysis Results</h2>
<div id="resultsContainer" class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6"></div>
</section>
<section>
<h2 class="text-2xl font-bold mb-6 flex items-center"><i class="fas fa-book-open mr-3 text-indigo-500"></i>API Documentation</h2>
<div class="bg-white dark:bg-gray-800 rounded-xl shadow-lg p-6">
<h3 class="text-lg font-semibold mb-2">Endpoint</h3>
<code class="block bg-gray-100 dark:bg-gray-700 p-3 rounded-lg text-sm mb-4">POST /v1/moderations</code>
<h3 class="text-lg font-semibold mb-2">Headers</h3>
<code class="block bg-gray-100 dark:bg-gray-700 p-3 rounded-lg text-sm mb-4">Authorization: Bearer YOUR_API_KEY<br>Content-Type: application/json</code>
<h3 class="text-lg font-semibold mb-2">Request Body</h3>
<p class="text-sm mb-2">The `input` field can be a single string/URL or a list of strings/URLs.</p>
<code class="block bg-gray-100 dark:bg-gray-700 p-3 rounded-lg text-sm mb-4">{"input": "Text to moderate"}</code>
<h3 class="text-lg font-semibold mb-2">Usage Example (cURL)</h3>
<div class="space-y-4">
<div>
<h4 class="font-semibold text-md mb-1">Text Moderation</h4>
<pre class="bg-gray-100 dark:bg-gray-700 p-4 rounded-lg overflow-x-auto text-sm"><code>curl -X POST https://nixaut-codelabs-smart-moderator.hf.space/v1/moderations \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{"input": "You are stupid and I hate you."}'</code></pre>
</div>
<div>
<h4 class="font-semibold text-md mb-1">Multimodal Moderation (Text + Image)</h4>
<pre class="bg-gray-100 dark:bg-gray-700 p-4 rounded-lg overflow-x-auto text-sm"><code>curl -X POST https://nixaut-codelabs-smart-moderator.hf.space/v1/moderations \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{"input": [
"This is a perfectly normal sentence.",
"https://upload.wikimedia.org/wikipedia/commons/3/3f/Fronalpstock_big.jpg"
]}'</code></pre>
</div>
</div>
</div>
</section>
</main>
<footer class="bg-gray-100 dark:bg-gray-800 border-t border-gray-200 dark:border-gray-700 mt-12">
<div class="container mx-auto px-4 py-6 text-center text-gray-600 dark:text-gray-400 text-sm">
© 2024 Smart Moderator by Nix-Aut Codelabs | <a href="https://nixaut-codelabs-smart-moderator.hf.space" class="hover:underline">nixaut-codelabs-smart-moderator.hf.space</a>
</div>
</footer>
<script>
const darkModeToggle = document.getElementById('darkModeToggle');
if (localStorage.getItem('theme') === 'dark' || (!('theme' in localStorage) && window.matchMedia('(prefers-color-scheme: dark)').matches)) {
document.documentElement.classList.add('dark');
}
darkModeToggle.addEventListener('click', () => {
document.documentElement.classList.toggle('dark');
localStorage.setItem('theme', document.documentElement.classList.contains('dark') ? 'dark' : 'light');
});
let activityChart;
async function fetchMetrics() {
const apiKey = document.getElementById('apiKey').value || 'temp-key';
try {
const response = await fetch('/v1/metrics', { headers: { 'Authorization': 'Bearer ' + apiKey } });
if (!response.ok) return;
const data = await response.json();
document.getElementById('avgResponseTime').textContent = data.avg_request_time_ms.toFixed(0) + 'ms';
document.getElementById('peakResponseTime').textContent = data.peak_request_time_ms.toFixed(0) + 'ms';
document.getElementById('requestsPerMinute').textContent = data.requests_per_minute;
document.getElementById('todayRequests').textContent = data.today_requests.toLocaleString();
if (activityChart) {
const labels = data.last_7_days.map(d => new Date(d.date).toLocaleDateString('en-US', { month: 'short', day: 'numeric' })).reverse();
const requests = data.last_7_days.map(d => d.requests).reverse();
activityChart.data.labels = labels;
activityChart.data.datasets[0].data = requests;
activityChart.update();
}
} catch (e) { console.error("Could not fetch metrics", e); }
}
function initChart() {
const ctx = document.getElementById('activityChart').getContext('2d');
const isDark = document.documentElement.classList.contains('dark');
activityChart = new Chart(ctx, {
type: 'bar',
data: { labels: [], datasets: [{ label: 'Requests', data: [], backgroundColor: 'rgba(99, 102, 241, 0.6)' }] },
options: { responsive: true, maintainAspectRatio: false, scales: { y: { beginAtZero: true } } }
});
}
document.getElementById('apiTestForm').addEventListener('submit', async (e) => {
e.preventDefault();
const apiKey = document.getElementById('apiKey').value;
if (!apiKey) { alert('Please enter an API key.'); return; }
const rawInput = document.getElementById('apiInput').value.trim();
if (!rawInput) { alert('Please enter text or a URL to analyze.'); return; }
const inputs = rawInput.split('\\n').map(item => item.trim()).filter(Boolean);
const body = { input: inputs.length === 1 ? inputs[0] : inputs };
const analyzeBtn = document.getElementById('analyzeBtn');
analyzeBtn.disabled = true;
analyzeBtn.innerHTML = '<div class="loading-spinner inline-block w-4 h-4 border-2 border-white rounded-full mr-2"></div>Analyzing...';
try {
const response = await fetch('/v1/moderations', {
method: 'POST',
headers: { 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + apiKey },
body: JSON.stringify(body)
});
const data = await response.json();
displayResults(data);
fetchMetrics();
} catch (error) {
alert('An error occurred: ' + error.message);
} finally {
analyzeBtn.disabled = false;
analyzeBtn.innerHTML = '<i class="fas fa-search mr-2"></i>Analyze';
}
});
function displayResults(data) {
const resultsContainer = document.getElementById('resultsContainer');
resultsContainer.innerHTML = '';
if (data.error) {
resultsContainer.innerHTML = `<div class="p-4 text-red-700 bg-red-100 dark:bg-red-900 dark:text-red-200 rounded-lg"><p><strong>Error:</strong> ${data.error.message || JSON.stringify(data.error)}</p></div>`;
} else if (data.results) {
data.results.forEach((result, index) => {
const resultCard = document.createElement('div');
resultCard.className = 'border-t border-gray-200 dark:border-gray-700 pt-4 mt-4 first:mt-0 first:border-t-0 first:pt-0';
const flaggedBadge = result.flagged
? '<span class="px-2 py-1 text-xs font-medium rounded-full bg-red-100 text-red-800">Flagged</span>'
: '<span class="px-2 py-1 text-xs font-medium rounded-full bg-green-100 text-green-800">Safe</span>';
let categoriesHtml = Object.entries(result.category_scores).map(([category, score]) => {
const isFlagged = result.categories[category];
return `<div class="flex justify-between py-1"><span class="${isFlagged ? 'font-bold text-red-500' : ''}">${category.replace("/", " / ")}</span><span class="font-mono text-sm">${score.toFixed(4)}</span></div>`;
}).join('');
resultCard.innerHTML = `<div class="flex justify-between items-center mb-2"><h4 class="font-bold">Input ${index + 1}</h4>${flaggedBadge}</div><div>${categoriesHtml}</div>`;
resultsContainer.appendChild(resultCard);
});
}
document.getElementById('resultsSection').classList.remove('hidden');
}
document.addEventListener('DOMContentLoaded', () => {
initChart();
fetchMetrics();
setInterval(fetchMetrics, 20000);
});
</script>
</body>
</html>
'''
index_path = os.path.join('templates', 'index.html')
if not os.path.exists(index_path):
with open(index_path, 'w', encoding='utf-8') as f:
f.write(index_html_content)
if __name__ == '__main__':
create_app_structure()
port = int(os.environ.get('PORT', 7860))
# For production, use a proper WSGI server like Gunicorn
# gunicorn --bind 0.0.0.0:7860 app:app
app.run(host='0.0.0.0', port=port, debug=False)