|
import { z } from "zod"; |
|
import type { EmbeddingEndpoint, Embedding } from "../embeddingEndpoints"; |
|
import { chunk } from "$lib/utils/chunk"; |
|
import { OPENAI_API_KEY } from "$env/static/private"; |
|
|
|
export const embeddingEndpointOpenAIParametersSchema = z.object({ |
|
weight: z.number().int().positive().default(1), |
|
model: z.any(), |
|
type: z.literal("openai"), |
|
url: z.string().url().default("https://api.openai.com/v1/embeddings"), |
|
apiKey: z.string().default(OPENAI_API_KEY), |
|
}); |
|
|
|
export async function embeddingEndpointOpenAI( |
|
input: z.input<typeof embeddingEndpointOpenAIParametersSchema> |
|
): Promise<EmbeddingEndpoint> { |
|
const { url, model, apiKey } = embeddingEndpointOpenAIParametersSchema.parse(input); |
|
|
|
const maxBatchSize = model.maxBatchSize || 100; |
|
|
|
return async ({ inputs }) => { |
|
const requestURL = new URL(url); |
|
|
|
const batchesInputs = chunk(inputs, maxBatchSize); |
|
|
|
const batchesResults = await Promise.all( |
|
batchesInputs.map(async (batchInputs) => { |
|
const response = await fetch(requestURL, { |
|
method: "POST", |
|
headers: { |
|
Accept: "application/json", |
|
"Content-Type": "application/json", |
|
...(apiKey ? { Authorization: `Bearer ${apiKey}` } : {}), |
|
}, |
|
body: JSON.stringify({ input: batchInputs, model: model.name }), |
|
}); |
|
|
|
const embeddings: Embedding[] = []; |
|
const responseObject = await response.json(); |
|
for (const embeddingObject of responseObject.data) { |
|
embeddings.push(embeddingObject.embedding); |
|
} |
|
return embeddings; |
|
}) |
|
); |
|
|
|
const flatAllEmbeddings = batchesResults.flat(); |
|
|
|
return flatAllEmbeddings; |
|
}; |
|
} |
|
|