|
import spaces |
|
import io |
|
import os |
|
import torch |
|
from PIL import Image |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig |
|
|
|
title = """# Welcome to🌟Tonic's CheXRay⚕⚛ ! |
|
You can use this ZeroGPU Space to test out the current model [StanfordAIMI/CheXagent-8b](https://huggingface.co/StanfordAIMI/CheXagent-8b). CheXRay⚕⚛ is fine tuned to analyze chest x-rays with a different and generally better results than other multimodal models. |
|
You can also useCheXRay⚕⚛ by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/CheXRay?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> |
|
|
|
### How To use |
|
|
|
Upload a medical image and enter a prompt to receive an AI-generated analysis. |
|
simply upload an image with the right prompt (coming soon!) and anaylze your Xray ! |
|
|
|
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 |
|
""" |
|
|
|
device = "cuda" |
|
dtype = torch.float16 |
|
example_images = ["00000174_003.png", "00006596_000.png", "00006663_000.png", |
|
"00012976_002.png", "00018401_000.png", "00019799_000.png"] |
|
|
|
processor = AutoProcessor.from_pretrained("liuhaotian/llava-v1.6-mistral-7b", trust_remote_code=True) |
|
generation_config = GenerationConfig.from_pretrained("liuhaotian/llava-v1.6-mistral-7b") |
|
|
|
|
|
@spaces.GPU |
|
def generate(image, prompt): |
|
model = AutoModelForCausalLM.from_pretrained("liuhaotian/llava-v1.6-mistral-7b", torch_dtype=dtype, trust_remote_code=True).to(device) |
|
if hasattr(image, "read"): |
|
image = Image.open(io.BytesIO(image.read())).convert("RGB") |
|
else: |
|
image = image |
|
images = [image] |
|
inputs = processor(images=images, text=f" USER: <s>{prompt} ASSISTANT: <s>", return_tensors="pt").to(device=device, dtype=dtype) |
|
output = model.generate(**inputs, generation_config=generation_config)[0] |
|
response = processor.tokenizer.decode(output, skip_special_tokens=True) |
|
return response |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
with gr.Accordion("Custom Prompt Analysis", open=False): |
|
with gr.Row(): |
|
image_input_custom = gr.Image(type="pil") |
|
prompt_input_custom = gr.Textbox(label="Enter your custom prompt") |
|
generate_button_custom = gr.Button("Generate") |
|
output_text_custom = gr.Textbox(label="Response") |
|
|
|
def custom_generate(image, prompt): |
|
if isinstance(image, str) and os.path.exists(image): |
|
with open(image, 'rb') as file: |
|
return generate(file, prompt) |
|
else: |
|
return generate(image, prompt) |
|
|
|
generate_button_custom.click(fn=custom_generate, inputs=[image_input_custom, prompt_input_custom], outputs=output_text_custom) |
|
custom_prompt_examples = [ |
|
[os.path.join(os.path.dirname(__file__), img), "You are an expert X-Ray Analyst, describe this chest x-ray in detail focussing on the lung condition:"] |
|
for img in example_images |
|
] |
|
|
|
|
|
|
|
with gr.Accordion("Examples", open=False): |
|
|
|
gr.Examples( |
|
examples=custom_prompt_examples, |
|
inputs=[image_input_custom, prompt_input_custom], |
|
outputs=[output_text_custom], |
|
fn=custom_generate, |
|
cache_examples=True |
|
) |
|
|
|
with gr.Accordion("Anatomical Feature Analysis", open=False): |
|
anatomies = [ |
|
"Airway", "Breathing", "Cardiac", "Diaphragm", |
|
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, and pacemakers)" |
|
] |
|
with gr.Row(): |
|
image_input_feature = gr.Image(type="pil") |
|
prompt_select = gr.Dropdown(label="Select an anatomical feature", choices=anatomies) |
|
generate_button_feature = gr.Button("Analyze Feature") |
|
output_text_feature = gr.Textbox(label="Response") |
|
generate_button_feature.click(fn=lambda image, feature: generate(image, f'Describe "{feature}"'), inputs=[image_input_feature, prompt_select], outputs=output_text_feature) |
|
anatomical_feature_examples = [ |
|
[os.path.join(os.path.dirname(__file__), img), "Airway"] |
|
for img in example_images |
|
] |
|
with gr.Accordion("Examples", open=False): |
|
gr.Examples( |
|
examples=anatomical_feature_examples, |
|
inputs=[image_input_feature, prompt_select], |
|
outputs=[output_text_feature], |
|
fn=lambda image, feature: generate(image, f'Describe "{feature}"'), |
|
cache_examples=True |
|
) |
|
|
|
with gr.Accordion("Common Abnormalities Analysis", open=False): |
|
common_abnormalities = ["Lung Nodule", "Pleural Effusion", "Pneumonia"] |
|
with gr.Row(): |
|
image_input_abnormality = gr.Image(type="pil") |
|
abnormality_select = gr.Dropdown(label="Select a common abnormality", choices=common_abnormalities) |
|
generate_button_abnormality = gr.Button("Analyze Abnormality") |
|
output_text_abnormality = gr.Textbox(label="Response") |
|
generate_button_abnormality.click(fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), inputs=[image_input_abnormality, abnormality_select], outputs=output_text_abnormality) |
|
common_abnormalities_examples = [ |
|
[os.path.join(os.path.dirname(__file__), img), "Lung Nodule"] |
|
for img in example_images |
|
] |
|
with gr.Accordion("Examples", open=False): |
|
gr.Examples( |
|
examples=common_abnormalities_examples, |
|
inputs=[image_input_abnormality, abnormality_select], |
|
outputs=[output_text_abnormality], |
|
fn=lambda image, abnormality: generate(image, f'Analyze for "{abnormality}"'), |
|
cache_examples=True |
|
) |
|
demo.launch() |