nishantup commited on
Commit
621036b
·
1 Parent(s): 3b63028

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +82 -0
  2. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ from langchain import OpenAI
4
+ from langchain.chains import ConversationChain
5
+ from langchain.chains.conversation.memory import (ConversationBufferMemory,
6
+ ConversationSummaryMemory,
7
+ ConversationBufferWindowMemory
8
+
9
+ )
10
+
11
+ if 'conversation' not in st.session_state:
12
+ st.session_state['conversation'] =None
13
+ if 'messages' not in st.session_state:
14
+ st.session_state['messages'] =[]
15
+ if 'API_Key' not in st.session_state:
16
+ st.session_state['API_Key'] =''
17
+
18
+ # Setting page title and header
19
+ st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:")
20
+ st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True)
21
+
22
+
23
+ st.sidebar.title("😎")
24
+ st.session_state['API_Key']= st.sidebar.text_input("What's your API key?",type="password")
25
+ summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
26
+ if summarise_button:
27
+ summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)
28
+ #summarise_placeholder.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)
29
+
30
+ #import os
31
+ #os.environ["OPENAI_API_KEY"] = "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"
32
+
33
+ def getresponse(userInput, api_key):
34
+
35
+ if st.session_state['conversation'] is None:
36
+
37
+ llm = OpenAI(
38
+ temperature=0,
39
+ openai_api_key=api_key,
40
+ model_name='text-davinci-003' #we can also use 'gpt-3.5-turbo'
41
+ )
42
+
43
+ st.session_state['conversation'] = ConversationChain(
44
+ llm=llm,
45
+ verbose=True,
46
+ memory=ConversationSummaryMemory(llm=llm)
47
+ )
48
+
49
+ response=st.session_state['conversation'].predict(input=userInput)
50
+ print(st.session_state['conversation'].memory.buffer)
51
+
52
+
53
+ return response
54
+
55
+
56
+
57
+ response_container = st.container()
58
+ # Here we will have a container for user input text box
59
+ container = st.container()
60
+
61
+
62
+ with container:
63
+ with st.form(key='my_form', clear_on_submit=True):
64
+ user_input = st.text_area("Your question goes here:", key='input', height=100)
65
+ submit_button = st.form_submit_button(label='Send')
66
+
67
+ if submit_button:
68
+ st.session_state['messages'].append(user_input)
69
+ model_response=getresponse(user_input,st.session_state['API_Key'])
70
+ st.session_state['messages'].append(model_response)
71
+
72
+
73
+ with response_container:
74
+ for i in range(len(st.session_state['messages'])):
75
+ if (i % 2) == 0:
76
+ message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
77
+ else:
78
+ message(st.session_state['messages'][i], key=str(i) + '_AI')
79
+
80
+
81
+
82
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ langchain
2
+ streamlit