|
import streamlit as st |
|
import pickle |
|
import requests |
|
|
|
def fetch_poster(movie_id): |
|
url = "https://api.themoviedb.org/3/movie/{}?api_key=c7ec19ffdd3279641fb606d19ceb9bb1&language=en-US".format(movie_id) |
|
data=requests.get(url) |
|
data=data.json() |
|
poster_path = data['poster_path'] |
|
full_path = "https://image.tmdb.org/t/p/w500/"+poster_path |
|
return full_path |
|
|
|
movies = pickle.load(open("movies_list.pkl", 'rb')) |
|
similarity = pickle.load(open("similarity.pkl", 'rb')) |
|
movies_list=movies['title'].values |
|
|
|
st.header("Movie Recommender System") |
|
|
|
st.text('The movie recommendation application is a content-based filtering system. The attributes of user watched movies which include the title and tags, are used to recommend movies. Cosine similarity is used as a degree of similarity in the vector space') |
|
|
|
import streamlit.components.v1 as components |
|
|
|
imageCarouselComponent = components.declare_component("image-carousel-component", path="frontend/public") |
|
|
|
|
|
imageUrls = [ |
|
fetch_poster(1632), |
|
fetch_poster(299536), |
|
fetch_poster(17455), |
|
fetch_poster(2830), |
|
fetch_poster(429422), |
|
fetch_poster(9722), |
|
fetch_poster(13972), |
|
fetch_poster(240), |
|
fetch_poster(155), |
|
fetch_poster(598), |
|
fetch_poster(914), |
|
fetch_poster(255709), |
|
fetch_poster(572154) |
|
|
|
] |
|
|
|
|
|
imageCarouselComponent(imageUrls=imageUrls, height=200) |
|
selectvalue=st.selectbox("Select movie from dropdown", movies_list) |
|
|
|
def recommend(movie): |
|
index=movies[movies['title']==movie].index[0] |
|
distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1]) |
|
recommend_movie=[] |
|
recommend_poster=[] |
|
for i in distance[1:6]: |
|
movies_id=movies.iloc[i[0]].id |
|
recommend_movie.append(movies.iloc[i[0]].title) |
|
recommend_poster.append(fetch_poster(movies_id)) |
|
return recommend_movie, recommend_poster |
|
|
|
|
|
|
|
if st.button("Show Recommendations"): |
|
movie_name, movie_poster = recommend(selectvalue) |
|
col1,col2,col3,col4,col5=st.columns(5) |
|
with col1: |
|
st.text(movie_name[0]) |
|
st.image(movie_poster[0]) |
|
with col2: |
|
st.text(movie_name[1]) |
|
st.image(movie_poster[1]) |
|
with col3: |
|
st.text(movie_name[2]) |
|
st.image(movie_poster[2]) |
|
with col4: |
|
st.text(movie_name[3]) |
|
st.image(movie_poster[3]) |
|
with col5: |
|
st.text(movie_name[4]) |
|
st.image(movie_poster[4]) |