Spaces:
Sleeping
Sleeping
nishantguvvada
commited on
Commit
·
2ec9390
1
Parent(s):
f2edbd4
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pickle
|
3 |
import tensorflow as tf
|
4 |
-
import cv2
|
5 |
import numpy as np
|
6 |
-
from
|
7 |
-
import
|
8 |
-
import
|
9 |
-
from textwrap import wrap
|
10 |
-
import matplotlib.pylab as plt
|
11 |
-
from tensorflow.keras import Input
|
12 |
-
from tensorflow.keras.layers import (
|
13 |
-
GRU,
|
14 |
-
Add,
|
15 |
-
AdditiveAttention,
|
16 |
-
Attention,
|
17 |
-
Concatenate,
|
18 |
-
Dense,
|
19 |
-
Embedding,
|
20 |
-
LayerNormalization,
|
21 |
-
Reshape,
|
22 |
-
StringLookup,
|
23 |
-
TextVectorization,
|
24 |
-
)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
IMG_WIDTH = 299
|
30 |
-
IMG_CHANNELS = 3
|
31 |
-
ATTENTION_DIM = 512 # size of dense layer in Attention
|
32 |
-
VOCAB_SIZE = 20000
|
33 |
-
FEATURES_SHAPE = (8, 8, 1536)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
image_model=tf.keras.models.load_model('./image_caption_model.h5')
|
38 |
-
return image_model
|
39 |
|
40 |
-
@st.cache_resource()
|
41 |
-
def load_decoder_model():
|
42 |
-
decoder_model=tf.keras.models.load_model('./decoder_pred_model.h5')
|
43 |
-
return decoder_model
|
44 |
-
|
45 |
-
@st.cache_resource()
|
46 |
-
def load_encoder_model():
|
47 |
-
encoder=tf.keras.models.load_model('./encoder_model.h5')
|
48 |
-
return encoder
|
49 |
-
|
50 |
-
|
51 |
st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation")
|
52 |
image = Image.open('./title.jpg')
|
53 |
st.image(image)
|
@@ -56,74 +20,34 @@ st.write("""
|
|
56 |
"""
|
57 |
)
|
58 |
|
59 |
-
file = st.file_uploader("Upload
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# We will override the default standardization of TextVectorization to preserve
|
64 |
-
# "<>" characters, so we preserve the tokens for the <start> and <end>.
|
65 |
-
def standardize(inputs):
|
66 |
-
inputs = tf.strings.lower(inputs)
|
67 |
-
return tf.strings.regex_replace(
|
68 |
-
inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
|
69 |
-
)
|
70 |
-
|
71 |
-
# Choose the most frequent words from the vocabulary & remove punctuation etc.
|
72 |
-
vocab = open('./tokenizer_vocab.txt', 'rb')
|
73 |
-
tokenizer = pickle.load(vocab)
|
74 |
-
|
75 |
-
|
76 |
-
# Lookup table: Word -> Index
|
77 |
-
word_to_index = StringLookup(
|
78 |
-
mask_token="", vocabulary=tokenizer
|
79 |
-
)
|
80 |
-
|
81 |
-
|
82 |
-
## Probabilistic prediction using the trained model
|
83 |
-
def predict_caption(file):
|
84 |
-
filename = Image.open(file)
|
85 |
-
image = filename.convert('RGB')
|
86 |
-
image = np.array(image)
|
87 |
-
gru_state = tf.zeros((1, ATTENTION_DIM))
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
predictions, gru_state = decoder_pred_model(
|
99 |
-
[dec_input, gru_state, features]
|
100 |
-
)
|
101 |
|
102 |
-
|
103 |
-
top_probs, top_idxs = tf.math.top_k(
|
104 |
-
input=predictions[0][0], k=10, sorted=False
|
105 |
-
)
|
106 |
-
chosen_id = tf.random.categorical([top_probs], 1)[0].numpy()
|
107 |
-
predicted_id = top_idxs.numpy()[chosen_id][0]
|
108 |
|
109 |
-
|
|
|
110 |
|
111 |
-
|
112 |
-
return img, result
|
113 |
|
114 |
-
|
|
|
|
|
115 |
|
116 |
-
return img, result
|
117 |
|
118 |
def on_click():
|
119 |
if file is None:
|
120 |
st.text("Please upload an image file")
|
121 |
else:
|
122 |
-
|
123 |
-
st.image(image, use_column_width=True)
|
124 |
-
for i in range(5):
|
125 |
-
image, caption = predict_caption(file)
|
126 |
-
#print(" ".join(caption[:-1]) + ".")
|
127 |
-
st.write(" ".join(caption[:-1]) + ".")
|
128 |
|
129 |
st.button('Generate', on_click=on_click)
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import tensorflow as tf
|
|
|
3 |
import numpy as np
|
4 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation")
|
16 |
image = Image.open('./title.jpg')
|
17 |
st.image(image)
|
|
|
20 |
"""
|
21 |
)
|
22 |
|
23 |
+
file = st.file_uploader("Upload an image to generate captions!", type= ['png', 'jpg'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
max_length = 16
|
26 |
+
num_beams = 4
|
27 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
28 |
+
def predict_step(image_paths):
|
29 |
+
images = []
|
30 |
+
for image_path in image_paths:
|
31 |
+
i_image = Image.open(image_path)
|
32 |
+
if i_image.mode != "RGB":
|
33 |
+
i_image = i_image.convert(mode="RGB")
|
|
|
|
|
|
|
34 |
|
35 |
+
images.append(i_image)
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
38 |
+
pixel_values = pixel_values.to(device)
|
39 |
|
40 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
|
|
41 |
|
42 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
43 |
+
preds = [pred.strip() for pred in preds]
|
44 |
+
return preds
|
45 |
|
|
|
46 |
|
47 |
def on_click():
|
48 |
if file is None:
|
49 |
st.text("Please upload an image file")
|
50 |
else:
|
51 |
+
predict_step([file])
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
st.button('Generate', on_click=on_click)
|