Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores import chroma
|
9 |
+
from langchain.chains.retrieval_qa.base import RetrievalQA
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain_community.llms import huggingface_hub
|
12 |
+
from langchain.document_loaders.pdf import PyMuPDFLoader
|
13 |
+
#from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
+
from ctransformers import AutoModelForCausalLM
|
15 |
+
import torch
|
16 |
+
|
17 |
+
#from langchain.llms import huggingface_endpoint
|
18 |
+
import os
|
19 |
+
import fitz
|
20 |
+
import tempfile
|
21 |
+
|
22 |
+
img = Image.open('image/nexio_logo1.png')
|
23 |
+
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
|
24 |
+
|
25 |
+
with st.sidebar:
|
26 |
+
st.title('🤖 AI PDF Chatbot 💬')
|
27 |
+
st.markdown('''
|
28 |
+
## About
|
29 |
+
This app is an AI chatbot for the PDF files
|
30 |
+
''')
|
31 |
+
add_vertical_space(12)
|
32 |
+
st.write('Powered by ')
|
33 |
+
st.image(image='image/nexio_logo2.png',width=150)
|
34 |
+
|
35 |
+
# load huggingface API key .env file
|
36 |
+
load_dotenv()
|
37 |
+
|
38 |
+
def main():
|
39 |
+
st.header("Chat with PDF 💬")
|
40 |
+
|
41 |
+
# upload pdf file
|
42 |
+
pdf = st.file_uploader("Upload your PDF file",type='pdf')
|
43 |
+
|
44 |
+
if pdf is not None:
|
45 |
+
pdf_reader = PdfReader(pdf)
|
46 |
+
|
47 |
+
text = ""
|
48 |
+
for page in pdf_reader.pages:
|
49 |
+
text += page.extract_text()
|
50 |
+
|
51 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
52 |
+
chunk_size=1000,
|
53 |
+
chunk_overlap=200,
|
54 |
+
length_function=len
|
55 |
+
)
|
56 |
+
chunks = text_splitter.split_text(text=text)
|
57 |
+
#chunks = text_splitter.create_documents(text)
|
58 |
+
|
59 |
+
# embeddings
|
60 |
+
embeddings = HuggingFaceEmbeddings()
|
61 |
+
vector_store = chroma.Chroma.from_texts(chunks,embeddings)
|
62 |
+
|
63 |
+
# Accept user question
|
64 |
+
query = st.text_input("Ask questions about your PDF file:")
|
65 |
+
|
66 |
+
if query:
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
PATH = 'model/'
|
69 |
+
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
|
70 |
+
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
|
71 |
+
llm = huggingface_hub.HuggingFaceHub(repo_id="CohereForAI/aya-101",
|
72 |
+
model_kwargs={"temperature":1.0, "max_length":100})
|
73 |
+
docs = vector_store.similarity_search(query=query, k=1)
|
74 |
+
global chain
|
75 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
76 |
+
response = chain.run(input_documents=docs, question=query)
|
77 |
+
# retriever=vector_store.as_retriever()
|
78 |
+
# st.write(retriever)
|
79 |
+
#chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever)
|
80 |
+
#response = chain.run(chain)
|
81 |
+
st.write(response)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
main()
|