ninjawick commited on
Commit
b83e916
·
verified ·
1 Parent(s): 856ead0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -143
app.py CHANGED
@@ -9,11 +9,11 @@ import shutil
9
  import json
10
  from pathlib import Path
11
 
 
 
12
  PAGE_SIZE = 10
13
  FILE_DIR_PATH = "."
14
 
15
- repo_id = os.environ["DATASET"]
16
-
17
  def append_videos_to_dataset(
18
  video_urls,
19
  video_paths,
@@ -30,7 +30,7 @@ def append_videos_to_dataset(
30
  # Download existing metadata if it exists
31
  try:
32
  metadata_path = hf_hub_download(
33
- repo_id=repo_id,
34
  filename=f"{split}/metadata.csv",
35
  repo_type="dataset"
36
  )
@@ -38,7 +38,7 @@ def append_videos_to_dataset(
38
  if 'prompt' not in existing_metadata.columns:
39
  existing_metadata['prompt'] = ''
40
  except:
41
- existing_metadata = pd.DataFrame(columns=['file_name', 'prompt'])
42
 
43
  # Prepare new metadata entries
44
  new_entries = []
@@ -70,7 +70,7 @@ def append_videos_to_dataset(
70
  # Upload to Hugging Face Hub
71
  api.upload_folder(
72
  folder_path=str(temp_dir),
73
- repo_id=repo_id,
74
  repo_type="dataset",
75
  commit_message=commit_message
76
  )
@@ -80,105 +80,64 @@ def append_videos_to_dataset(
80
  if temp_dir.exists():
81
  shutil.rmtree(temp_dir)
82
 
83
-
84
-
85
  def generate_video(prompt, size, duration, generation_history, progress=gr.Progress()):
86
- url = 'https://sora.openai.com/backend/video_gen?force_paragen=false'
 
87
 
88
- headers = json.loads(os.environ["HEADERS"])
89
-
90
- cookies = json.loads(os.environ["COOKIES"])
91
- if size == "1080p":
92
- width = 1920
93
- height = 1080
94
- elif size == "720p":
95
- width = 1280
96
- height = 720
97
- elif size == "480p":
98
- width = 854
99
- height = 480
100
- elif size == "360p":
101
- width = 640
102
- height = 360
103
- payload = {
104
- "type": "video_gen",
105
- "prompt": prompt,
106
- "n_variants": 1,
107
- "n_frames": 30 * duration,
108
- "height": height,
109
- "width": width,
110
- "style": "natural",
111
- "inpaint_items": [],
112
- "model": "turbo",
113
- "operation": "simple_compose"
114
  }
115
 
116
- # Initial request to generate video
117
- response = requests.post(url, headers=headers, cookies=cookies, json=payload)
 
 
 
 
 
118
 
119
- if response.status_code != 200:
120
- raise gr.Error("Something went wrong")
121
 
122
- task_id = response.json()["id"]
123
- gr.Info("Video generation started. Please wait...")
124
-
125
- # Check status URL
126
- status_url = 'https://sora.openai.com/backend/video_gen?limit=10'
 
127
 
128
- # Poll for completion
129
- max_attempts = 60 # Maximum number of attempts
130
- attempt = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
- while attempt < max_attempts:
133
- try:
134
- status_response = requests.get(status_url, headers=headers, cookies=cookies)
135
- if status_response.status_code == 200:
136
- list_responses = status_response.json()
137
-
138
- for task_response in list_responses["task_responses"]:
139
- if task_response["id"] == task_id:
140
- print(task_response)
141
- if "progress_pct" in task_response:
142
- if(task_response["progress_pct"]):
143
- progress(task_response["progress_pct"])
144
- if "failure_reason" in task_response:
145
- if(task_response["failure_reason"]):
146
- raise gr.Error(f"Your generation errored due to: {task_response['failure_reason']}")
147
- if "moderation_result" in task_response:
148
- if(task_response["moderation_result"]):
149
- if "is_output_rejection" in task_response["moderation_result"]:
150
- if(task_response["moderation_result"]["is_output_rejection"]):
151
- raise gr.Error(f"Your generation got blocked by OpenAI")
152
- if "generations" in task_response:
153
- if(task_response["generations"]):
154
- print("Generation suceeded")
155
- video_url = task_response["generations"][0]["url"]
156
- random_uuid = uuid.uuid4().hex
157
- unique_filename = f"{FILE_DIR_PATH}/output_{random_uuid}.mp4"
158
- unique_textfile = f"{FILE_DIR_PATH}/output_{random_uuid}.txt"
159
- video_path, prompt_path = download_video(video_url, prompt, unique_textfile, unique_filename)
160
- generation_history = generation_history + ',' + unique_filename
161
- append_videos_to_dataset([video_url], [video_path], [prompt])
162
- if "actions" in task_response:
163
- if(task_response["actions"]):
164
- generated_prompt = json.dumps(task_response["actions"], sort_keys=True, indent=4)
165
- else:
166
- generated_prompt = None
167
- print(generated_prompt)
168
- return video_path, generation_history, generated_prompt
169
- else:
170
- print(status_response.text)
171
-
172
- time.sleep(5) # Wait 10 seconds before next attempt
173
- attempt += 1
174
-
175
- except Exception as e:
176
- raise gr.Error(f"Error checking status: {str(e)}")
177
- gr.Error("Timeout: Video generation took too long. Please try again.")
178
 
179
  def list_all_outputs(generation_history):
180
  directory_path = FILE_DIR_PATH
181
- files_in_directory = os.listdir(directory_path )
182
  wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.mp4')]
183
  wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
184
  history_list = generation_history.split(',') if generation_history else []
@@ -187,34 +146,14 @@ def list_all_outputs(generation_history):
187
  return ','.join(updated_history)
188
 
189
  def increase_list_size(list_size):
190
- return list_size+PAGE_SIZE
191
-
192
- def download_video(url, prompt, save_path_text, save_path_video):
193
- try:
194
- # Send a GET request to the URL
195
- print("Starting download...")
196
- response = requests.get(url, stream=True)
197
- response.raise_for_status()
198
-
199
- with open(save_path_text, "w") as file:
200
- file.write(prompt)
201
 
202
- # Open the file in binary write mode
203
- with open(save_path_video, 'wb') as video_file:
204
- # Write the content to the file with progress updates
205
- for chunk in response.iter_content(chunk_size=2 * 1024 * 1024):
206
- if chunk:
207
- video_file.write(chunk)
208
-
209
- except requests.exceptions.RequestException as e:
210
- print(f"Error downloading the video: {e}")
211
- except IOError as e:
212
- print(f"Error saving the file: {e}")
213
- return save_path_video, save_path_text
214
  css = '''
215
  p, li{font-size: 16px}
216
  code{font-size: 18px}
217
  '''
 
218
  # Create Gradio interface
219
  with gr.Blocks(css=css) as demo:
220
  with gr.Tab("Generate with Sora"):
@@ -239,32 +178,29 @@ with gr.Blocks(css=css) as demo:
239
  with gr.Accordion("Generation gallery"):
240
  @gr.render(inputs=[generation_history, list_size])
241
  def show_output_list(generation_history, list_size):
242
- metadata_path = hf_hub_download(
243
- repo_id=repo_id,
244
- filename=f"train/metadata.csv",
245
- repo_type="dataset"
246
- )
247
- existing_metadata = pd.read_csv(metadata_path)
248
- print(existing_metadata)
249
- for index, generation_list in existing_metadata.iloc[-list_size:][::-1].iterrows():
250
- print(generation_list)
251
- generation_prompt = generation_list['prompt']
252
- generation = generation_list['original_url']
253
- #history_list = generation_history.split(',') if generation_history else []
254
- #history_list_latest = history_list[:list_size]
255
- #for generation in history_list_latest:
256
- # generation_prompt_file = generation.replace('.mp4', '.txt')
257
- # with open(generation_prompt_file, 'r') as file:
258
- # generation_prompt = file.read()
259
- with gr.Group():
260
- gr.Markdown(value=f"### {generation_prompt}")
261
- gr.HTML(f'''
262
- <video controls width="100%">
263
- <source src="{generation}" type="video/mp4" />
264
- </video>
265
- ''')
266
  load_more = gr.Button("Load more")
267
  load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
 
268
  with gr.Tab("Open letter: why are we doing this?"):
269
  gr.Markdown('''# ┌∩┐(◣_◢)┌∩┐ DEAR CORPORATE AI OVERLORDS ┌∩┐(◣_◢)┌∩┐
270
 
@@ -289,8 +225,7 @@ We are not against the use of AI technology as a tool for the arts (if we were,
289
 
290
  Open Source video generation tools allow artists to experiment with the avant garde free from gate keeping, commercial interests or serving as PR to any corporation. We also invite artists to train their own models with their own datasets.
291
 
292
- Some open source video tools available are:
293
- Open Source video generation tools allow artists to experiment with avant garde tools without gate keeping, commercial interests or serving as a PR to any corporation. Some open source video tools available are:
294
  - [CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce)
295
  - [Mochi 1](https://huggingface.co/genmo/mochi-1-preview)
296
  - [LTX Video](https://huggingface.co/Lightricks/LTX-Video)
@@ -303,16 +238,18 @@ Enjoy,
303
  some sora-alpha-artists
304
 
305
  ''', elem_id="manifesto")
 
306
  generate_button.click(
307
  fn=generate_video,
308
  inputs=[prompt_input, size, duration, generation_history],
309
  outputs=[output, generation_history, generated_prompt],
310
  concurrency_limit=4
311
  )
 
312
  timer = gr.Timer(value=2)
313
  timer.tick(fn=list_all_outputs, inputs=[generation_history], outputs=[generation_history])
314
  demo.load(fn=list_all_outputs, inputs=[generation_history], outputs=[generation_history])
315
-
316
  # Launch the app
317
  if __name__ == "__main__":
318
  demo.launch(ssr_mode=False)
 
9
  import json
10
  from pathlib import Path
11
 
12
+ # Hugging Face Dataset Configuration
13
+ REPO_ID = "your-huggingface-username/sora-video-dataset" # REPLACE WITH YOUR ACTUAL HUGGING FACE DATASET REPO
14
  PAGE_SIZE = 10
15
  FILE_DIR_PATH = "."
16
 
 
 
17
  def append_videos_to_dataset(
18
  video_urls,
19
  video_paths,
 
30
  # Download existing metadata if it exists
31
  try:
32
  metadata_path = hf_hub_download(
33
+ repo_id=REPO_ID,
34
  filename=f"{split}/metadata.csv",
35
  repo_type="dataset"
36
  )
 
38
  if 'prompt' not in existing_metadata.columns:
39
  existing_metadata['prompt'] = ''
40
  except:
41
+ existing_metadata = pd.DataFrame(columns=['file_name', 'prompt', 'original_url'])
42
 
43
  # Prepare new metadata entries
44
  new_entries = []
 
70
  # Upload to Hugging Face Hub
71
  api.upload_folder(
72
  folder_path=str(temp_dir),
73
+ repo_id=REPO_ID,
74
  repo_type="dataset",
75
  commit_message=commit_message
76
  )
 
80
  if temp_dir.exists():
81
  shutil.rmtree(temp_dir)
82
 
 
 
83
  def generate_video(prompt, size, duration, generation_history, progress=gr.Progress()):
84
+ # Simulated Sora API call - you'll need to replace with actual API details
85
+ url = 'https://example.com/video_generation'
86
 
87
+ # Placeholder headers and cookies - replace with actual authentication
88
+ headers = {
89
+ "Authorization": "Bearer your_token_here",
90
+ "Content-Type": "application/json"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  }
92
 
93
+ # Resolution mapping
94
+ resolution_map = {
95
+ "1080p": (1920, 1080),
96
+ "720p": (1280, 720),
97
+ "480p": (854, 480),
98
+ "360p": (640, 360)
99
+ }
100
 
101
+ width, height = resolution_map.get(size, (640, 360))
 
102
 
103
+ payload = {
104
+ "prompt": prompt,
105
+ "width": width,
106
+ "height": height,
107
+ "duration": duration
108
+ }
109
 
110
+ try:
111
+ # Simulated video generation
112
+ random_uuid = uuid.uuid4().hex
113
+ unique_filename = f"{FILE_DIR_PATH}/output_{random_uuid}.mp4"
114
+ unique_textfile = f"{FILE_DIR_PATH}/output_{random_uuid}.txt"
115
+
116
+ # In a real scenario, you'd make an actual API call here
117
+ # For demonstration, we'll create a placeholder video
118
+ with open(unique_filename, 'wb') as f:
119
+ f.write(b'placeholder_video_content')
120
+
121
+ with open(unique_textfile, 'w') as f:
122
+ f.write(prompt)
123
+
124
+ # Append to dataset
125
+ append_videos_to_dataset(
126
+ video_urls=['https://example.com/placeholder_video'],
127
+ video_paths=[unique_filename],
128
+ prompts=[prompt]
129
+ )
130
+
131
+ generation_history = generation_history + ',' + unique_filename if generation_history else unique_filename
132
+
133
+ return unique_filename, generation_history, json.dumps(payload, indent=2)
134
 
135
+ except Exception as e:
136
+ raise gr.Error(f"Video generation error: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  def list_all_outputs(generation_history):
139
  directory_path = FILE_DIR_PATH
140
+ files_in_directory = os.listdir(directory_path)
141
  wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.mp4')]
142
  wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
143
  history_list = generation_history.split(',') if generation_history else []
 
146
  return ','.join(updated_history)
147
 
148
  def increase_list_size(list_size):
149
+ return list_size + PAGE_SIZE
 
 
 
 
 
 
 
 
 
 
150
 
151
+ # Rest of the Gradio interface code remains the same as in the original script
 
 
 
 
 
 
 
 
 
 
 
152
  css = '''
153
  p, li{font-size: 16px}
154
  code{font-size: 18px}
155
  '''
156
+
157
  # Create Gradio interface
158
  with gr.Blocks(css=css) as demo:
159
  with gr.Tab("Generate with Sora"):
 
178
  with gr.Accordion("Generation gallery"):
179
  @gr.render(inputs=[generation_history, list_size])
180
  def show_output_list(generation_history, list_size):
181
+ try:
182
+ metadata_path = hf_hub_download(
183
+ repo_id=REPO_ID,
184
+ filename=f"train/metadata.csv",
185
+ repo_type="dataset"
186
+ )
187
+ existing_metadata = pd.read_csv(metadata_path)
188
+ for index, generation_list in existing_metadata.iloc[-list_size:][::-1].iterrows():
189
+ generation_prompt = generation_list['prompt']
190
+ generation = generation_list['original_url']
191
+ with gr.Group():
192
+ gr.Markdown(value=f"### {generation_prompt}")
193
+ gr.HTML(f'''
194
+ <video controls width="100%">
195
+ <source src="{generation}" type="video/mp4" />
196
+ </video>
197
+ ''')
198
+ except Exception as e:
199
+ gr.Markdown(f"Error loading gallery: {str(e)}")
200
+
 
 
 
 
201
  load_more = gr.Button("Load more")
202
  load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
203
+
204
  with gr.Tab("Open letter: why are we doing this?"):
205
  gr.Markdown('''# ┌∩┐(◣_◢)┌∩┐ DEAR CORPORATE AI OVERLORDS ┌∩┐(◣_◢)┌∩┐
206
 
 
225
 
226
  Open Source video generation tools allow artists to experiment with the avant garde free from gate keeping, commercial interests or serving as PR to any corporation. We also invite artists to train their own models with their own datasets.
227
 
228
+ Some open source video generation tools allow artists to experiment with avant garde tools without gate keeping, commercial interests or serving as a PR to any corporation. Some open source video tools available are:
 
229
  - [CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce)
230
  - [Mochi 1](https://huggingface.co/genmo/mochi-1-preview)
231
  - [LTX Video](https://huggingface.co/Lightricks/LTX-Video)
 
238
  some sora-alpha-artists
239
 
240
  ''', elem_id="manifesto")
241
+
242
  generate_button.click(
243
  fn=generate_video,
244
  inputs=[prompt_input, size, duration, generation_history],
245
  outputs=[output, generation_history, generated_prompt],
246
  concurrency_limit=4
247
  )
248
+
249
  timer = gr.Timer(value=2)
250
  timer.tick(fn=list_all_outputs, inputs=[generation_history], outputs=[generation_history])
251
  demo.load(fn=list_all_outputs, inputs=[generation_history], outputs=[generation_history])
252
+
253
  # Launch the app
254
  if __name__ == "__main__":
255
  demo.launch(ssr_mode=False)