Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -104,15 +104,12 @@ class TransformerDecoder(nn.Module):
|
|
| 104 |
return output
|
| 105 |
|
| 106 |
@classmethod
|
| 107 |
-
def from_pretrained(cls,
|
| 108 |
-
"""Load a pretrained model from
|
| 109 |
try:
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
raise FileNotFoundError(f"Config not found at {config_path}")
|
| 114 |
-
|
| 115 |
-
with open(config_path) as f:
|
| 116 |
config = json.load(f)
|
| 117 |
|
| 118 |
# Create model instance
|
|
@@ -126,25 +123,23 @@ class TransformerDecoder(nn.Module):
|
|
| 126 |
dropout=config.get('dropout', 0.1)
|
| 127 |
)
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
raise FileNotFoundError(f"Weights not found at {weights_path}")
|
| 133 |
-
|
| 134 |
-
state_dict = torch.load(weights_path, map_location=device)
|
| 135 |
model.load_state_dict(state_dict)
|
| 136 |
|
| 137 |
return model.to(device)
|
| 138 |
|
| 139 |
except Exception as e:
|
| 140 |
-
raise Exception(f"Error loading model from {
|
| 141 |
|
| 142 |
def generate_text(prompt, max_length=100, temperature=0.7):
|
| 143 |
try:
|
| 144 |
# Load model and tokenizer from Hugging Face Hub
|
| 145 |
model_id = "ninagala/shakespeare-model"
|
| 146 |
-
tokenizer_file = hf_hub_download(repo_id=model_id, filename="tokenizer.json")
|
| 147 |
|
|
|
|
|
|
|
| 148 |
model = TransformerDecoder.from_pretrained(model_id)
|
| 149 |
tokenizer = Tokenizer.from_file(tokenizer_file)
|
| 150 |
|
|
@@ -153,6 +148,8 @@ def generate_text(prompt, max_length=100, temperature=0.7):
|
|
| 153 |
tokens = tokenizer.encode(prompt).ids
|
| 154 |
input_ids = torch.tensor(tokens).unsqueeze(0)
|
| 155 |
|
|
|
|
|
|
|
| 156 |
with torch.no_grad():
|
| 157 |
for _ in range(max_length):
|
| 158 |
outputs = model(input_ids)
|
|
@@ -161,7 +158,10 @@ def generate_text(prompt, max_length=100, temperature=0.7):
|
|
| 161 |
next_token = torch.multinomial(probs, num_samples=1)
|
| 162 |
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 163 |
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
break
|
| 166 |
|
| 167 |
return tokenizer.decode(input_ids[0].tolist())
|
|
|
|
| 104 |
return output
|
| 105 |
|
| 106 |
@classmethod
|
| 107 |
+
def from_pretrained(cls, model_id: str, device: str = 'cpu'):
|
| 108 |
+
"""Load a pretrained model from Hugging Face Hub"""
|
| 109 |
try:
|
| 110 |
+
# Download config
|
| 111 |
+
config_file = hf_hub_download(repo_id=model_id, filename="config.json")
|
| 112 |
+
with open(config_file) as f:
|
|
|
|
|
|
|
|
|
|
| 113 |
config = json.load(f)
|
| 114 |
|
| 115 |
# Create model instance
|
|
|
|
| 123 |
dropout=config.get('dropout', 0.1)
|
| 124 |
)
|
| 125 |
|
| 126 |
+
# Download and load weights
|
| 127 |
+
weights_file = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
| 128 |
+
state_dict = torch.load(weights_file, map_location=device)
|
|
|
|
|
|
|
|
|
|
| 129 |
model.load_state_dict(state_dict)
|
| 130 |
|
| 131 |
return model.to(device)
|
| 132 |
|
| 133 |
except Exception as e:
|
| 134 |
+
raise Exception(f"Error loading model from {model_id}: {str(e)}")
|
| 135 |
|
| 136 |
def generate_text(prompt, max_length=100, temperature=0.7):
|
| 137 |
try:
|
| 138 |
# Load model and tokenizer from Hugging Face Hub
|
| 139 |
model_id = "ninagala/shakespeare-model"
|
|
|
|
| 140 |
|
| 141 |
+
# Download files from hub
|
| 142 |
+
tokenizer_file = hf_hub_download(repo_id=model_id, filename="tokenizer.json")
|
| 143 |
model = TransformerDecoder.from_pretrained(model_id)
|
| 144 |
tokenizer = Tokenizer.from_file(tokenizer_file)
|
| 145 |
|
|
|
|
| 148 |
tokens = tokenizer.encode(prompt).ids
|
| 149 |
input_ids = torch.tensor(tokens).unsqueeze(0)
|
| 150 |
|
| 151 |
+
generated_tokens = []
|
| 152 |
+
|
| 153 |
with torch.no_grad():
|
| 154 |
for _ in range(max_length):
|
| 155 |
outputs = model(input_ids)
|
|
|
|
| 158 |
next_token = torch.multinomial(probs, num_samples=1)
|
| 159 |
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 160 |
|
| 161 |
+
token_id = next_token.item()
|
| 162 |
+
generated_tokens.append(token_id)
|
| 163 |
+
|
| 164 |
+
if token_id == tokenizer.token_to_id("[EOS]"):
|
| 165 |
break
|
| 166 |
|
| 167 |
return tokenizer.decode(input_ids[0].tolist())
|