Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import RobertaForQuestionAnswering
|
3 |
+
from transformers import BertForQuestionAnswering
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from transformers import pipeline
|
6 |
+
import soundfile as sf
|
7 |
+
import torch
|
8 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
9 |
+
import sox
|
10 |
+
import subprocess
|
11 |
+
|
12 |
+
|
13 |
+
def read_file_and_process(wav_file):
|
14 |
+
filename = wav_file.split('.')[0]
|
15 |
+
filename_16k = filename + "16k.wav"
|
16 |
+
resampler(wav_file, filename_16k)
|
17 |
+
speech, _ = sf.read(filename_16k)
|
18 |
+
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
|
19 |
+
|
20 |
+
return inputs
|
21 |
+
|
22 |
+
|
23 |
+
def resampler(input_file_path, output_file_path):
|
24 |
+
command = (
|
25 |
+
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
|
26 |
+
f"{output_file_path}"
|
27 |
+
)
|
28 |
+
subprocess.call(command, shell=True)
|
29 |
+
|
30 |
+
|
31 |
+
def parse_transcription(logits):
|
32 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
33 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
34 |
+
return transcription
|
35 |
+
|
36 |
+
|
37 |
+
def parse(wav_file):
|
38 |
+
input_values = read_file_and_process(wav_file)
|
39 |
+
with torch.no_grad():
|
40 |
+
logits = model(**input_values).logits
|
41 |
+
user_question = parse_transcription(logits)
|
42 |
+
return user_question
|
43 |
+
|
44 |
+
|
45 |
+
model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
|
46 |
+
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
47 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
48 |
+
|
49 |
+
model1 = RobertaForQuestionAnswering.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
|
50 |
+
tokenizer1 = AutoTokenizer.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
|
51 |
+
|
52 |
+
|
53 |
+
roberta_large = pipeline(task='question-answering', model=model1, tokenizer=tokenizer1)
|
54 |
+
|
55 |
+
def Q_A(text=None, audio=None, context=None):
|
56 |
+
if text is None:
|
57 |
+
question = parse(audio)
|
58 |
+
elif audio is None:
|
59 |
+
question = text
|
60 |
+
answer_pedram = roberta_large({"question":question, "context":context})['answer']
|
61 |
+
return answer_pedram
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
# Create title, description and article strings
|
66 |
+
title = "Question and answer based on Roberta model develop by nima asl toghiri"
|
67 |
+
description = "سیستم پردازش زبانی پرسش و پاسخ"
|
68 |
+
article = "آموزش داده شده با مدل زبانی روبرتا"
|
69 |
+
|
70 |
+
|
71 |
+
demo = gr.Interface(fn=Q_A, # mapping function from input to output
|
72 |
+
inputs=[gr.Textbox(label='پرسش خود را وارد کنید:', show_label=True, text_align='right', lines=2),
|
73 |
+
gr.Audio(source="microphone", type="filepath",
|
74 |
+
label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.",
|
75 |
+
show_download_button=True,
|
76 |
+
show_edit_button=True,),
|
77 |
+
gr.Textbox(label='متن منبع خود را وارد کنید', show_label=True, text_align='right', lines=8)], # what are the inputs?
|
78 |
+
outputs=gr.Text(show_copy_button=True), # what are the outputs?
|
79 |
+
# our fn has two outputs, therefore we have two outputs
|
80 |
+
# Create examples list from "examples/" directory
|
81 |
+
title=title,
|
82 |
+
description=description,
|
83 |
+
article=article)
|
84 |
+
|
85 |
+
# Launch the demo!
|
86 |
+
demo.launch(share=True)
|