nimocodes commited on
Commit
3da0952
·
verified ·
1 Parent(s): be81b44

Upload 4 files

Browse files
Files changed (4) hide show
  1. Meso_4.ipynb +525 -0
  2. first.ipynb +265 -0
  3. gradio_api.py +10 -0
  4. inference_2.py +153 -0
Meso_4.ipynb ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {
7
+ "id": "h3_RFpXiPQR6"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "from tensorflow.keras import Model\n",
12
+ "from tensorflow.keras import Input\n",
13
+ "from tensorflow.keras.layers import Conv2D, ReLU, ELU, LeakyReLU, Dropout, Dense, MaxPooling2D, Flatten, BatchNormalization\n",
14
+ "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
15
+ "from tensorflow.keras.optimizers import Adam\n",
16
+ "from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping\n",
17
+ "from tensorflow.keras.utils import plot_model\n",
18
+ "from tensorflow.keras.models import load_model\n",
19
+ "from sklearn.metrics import classification_report\n",
20
+ "\n",
21
+ "import numpy as np\n",
22
+ "import matplotlib.pyplot as plt\n"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 2,
28
+ "metadata": {
29
+ "id": "ADU3Hu_TAFvG"
30
+ },
31
+ "outputs": [],
32
+ "source": [
33
+ "IMG_WIDTH = 256"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 3,
39
+ "metadata": {
40
+ "id": "NyTzubIUjeCR"
41
+ },
42
+ "outputs": [],
43
+ "source": [
44
+ "def get_datagen(use_default_augmentation=True, **kwargs):\n",
45
+ " kwargs.update({'rescale': 1./255})\n",
46
+ " if use_default_augmentation:\n",
47
+ " kwargs.update({\n",
48
+ " 'rotation_range': 15,\n",
49
+ " 'zoom_range': 0.2,\n",
50
+ " 'brightness_range': (0.8, 1.2),\n",
51
+ " 'channel_shift_range': 30,\n",
52
+ " 'horizontal_flip': True,\n",
53
+ " })\n",
54
+ " return ImageDataGenerator(**kwargs)"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 4,
60
+ "metadata": {
61
+ "id": "nrH7Fz6EM4mk"
62
+ },
63
+ "outputs": [],
64
+ "source": [
65
+ "def get_train_data_generator(\n",
66
+ " train_data_dir, \n",
67
+ " batch_size, \n",
68
+ " validation_split=None, \n",
69
+ " use_default_augmentation=True,\n",
70
+ " augmentations=None\n",
71
+ "):\n",
72
+ " if not augmentations:\n",
73
+ " augmentations = {}\n",
74
+ "\n",
75
+ " train_datagen = get_datagen(\n",
76
+ " use_default_augmentation=use_default_augmentation,\n",
77
+ " validation_split=validation_split if validation_split else 0.0,\n",
78
+ " **augmentations\n",
79
+ " )\n",
80
+ " \n",
81
+ " train_generator = train_datagen.flow_from_directory(\n",
82
+ " directory=train_data_dir,\n",
83
+ " target_size=(IMG_WIDTH, IMG_WIDTH),\n",
84
+ " batch_size=batch_size,\n",
85
+ " class_mode='binary',\n",
86
+ " subset='training',\n",
87
+ " )\n",
88
+ "\n",
89
+ " validation_generator = None\n",
90
+ "\n",
91
+ " if validation_split:\n",
92
+ " validation_generator = train_datagen.flow_from_directory(\n",
93
+ " directory=train_data_dir,\n",
94
+ " target_size=(IMG_WIDTH, IMG_WIDTH),\n",
95
+ " batch_size=batch_size,\n",
96
+ " class_mode='binary',\n",
97
+ " subset='validation'\n",
98
+ " )\n",
99
+ "\n",
100
+ " return train_generator, validation_generator"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 5,
106
+ "metadata": {
107
+ "id": "6G7tVf0wNHvd"
108
+ },
109
+ "outputs": [],
110
+ "source": [
111
+ "def get_test_data_generator(test_data_dir, batch_size, shuffle=False):\n",
112
+ " test_datagen = get_datagen(use_default_augmentation=False)\n",
113
+ " return test_datagen.flow_from_directory(\n",
114
+ " directory=test_data_dir,\n",
115
+ " target_size=(IMG_WIDTH, IMG_WIDTH),\n",
116
+ " batch_size=batch_size,\n",
117
+ " class_mode='binary',\n",
118
+ " shuffle=shuffle\n",
119
+ " )"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": 6,
125
+ "metadata": {
126
+ "id": "kSWlbqMv-TK4"
127
+ },
128
+ "outputs": [],
129
+ "source": [
130
+ "def activation_layer(ip, activation, *args):\n",
131
+ " return {'relu': ReLU(*args)(ip),\n",
132
+ " 'elu': ELU(*args)(ip),\n",
133
+ " 'lrelu': LeakyReLU(*args)(ip)}[activation]"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "execution_count": 7,
139
+ "metadata": {
140
+ "id": "CvF1f4Y28oPM"
141
+ },
142
+ "outputs": [],
143
+ "source": [
144
+ "def conv2D(ip,\n",
145
+ " filters,\n",
146
+ " kernel_size,\n",
147
+ " activation,\n",
148
+ " padding='same',\n",
149
+ " pool_size=(2, 2)):\n",
150
+ " layer = Conv2D(filters,\n",
151
+ " kernel_size=kernel_size,\n",
152
+ " padding=padding)(ip)\n",
153
+ "\n",
154
+ " layer = activation_layer(layer, activation=activation)\n",
155
+ "\n",
156
+ " layer = BatchNormalization()(layer)\n",
157
+ "\n",
158
+ " return MaxPooling2D(pool_size=pool_size, padding=padding)(layer)"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 8,
164
+ "metadata": {
165
+ "id": "d-4--jRd-bz1"
166
+ },
167
+ "outputs": [],
168
+ "source": [
169
+ "def fully_connected_layer(ip,\n",
170
+ " hidden_activation,\n",
171
+ " dropout):\n",
172
+ " layer = Dense(16)(ip)\n",
173
+ " layer = activation_layer(layer, hidden_activation, *[0.1,])\n",
174
+ " return Dropout(rate=dropout)(layer)"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": 9,
180
+ "metadata": {
181
+ "id": "1Cp48aFy_k4G"
182
+ },
183
+ "outputs": [],
184
+ "source": [
185
+ "def build_model(ip=Input(shape=(IMG_WIDTH, IMG_WIDTH, 3)),\n",
186
+ " activation='relu',\n",
187
+ " dropout=0.5,\n",
188
+ " hidden_activation='lrelu'):\n",
189
+ " \n",
190
+ " layer = conv2D(ip, filters=8, kernel_size=(3, 3), activation=activation)\n",
191
+ "\n",
192
+ " layer = conv2D(layer, filters=8, kernel_size=(5, 5), activation=activation)\n",
193
+ "\n",
194
+ " layer = conv2D(layer, filters=16, kernel_size=(5, 5), activation=activation)\n",
195
+ "\n",
196
+ " layer = conv2D(layer, filters=16, kernel_size=(5, 5), activation=activation, pool_size=(4, 4))\n",
197
+ "\n",
198
+ " layer = Flatten()(layer)\n",
199
+ " layer = Dropout(rate=dropout)(layer)\n",
200
+ "\n",
201
+ " layer = fully_connected_layer(layer, hidden_activation=hidden_activation, dropout=dropout)\n",
202
+ "\n",
203
+ " op_layer = Dense(1, activation='sigmoid')(layer)\n",
204
+ "\n",
205
+ " model = Model(ip, op_layer)\n",
206
+ "\n",
207
+ " return model"
208
+ ]
209
+ },
210
+ {
211
+ "cell_type": "code",
212
+ "execution_count": 10,
213
+ "metadata": {
214
+ "id": "ZdoMu0LbDGMC"
215
+ },
216
+ "outputs": [],
217
+ "source": [
218
+ "def evaluate_model(model, test_data_dir, batch_size):\n",
219
+ " data = get_test_data_generator(test_data_dir, batch_size)\n",
220
+ " return model.evaluate(data)\n",
221
+ "\n",
222
+ "\n",
223
+ "def predict(model, data, steps=None, threshold=0.5):\n",
224
+ " predictions = model.predict(data, steps=steps, verbose=1)\n",
225
+ " return predictions, np.where(predictions >= threshold, 1, 0)\n",
226
+ "\n",
227
+ "\n",
228
+ "def save_model_history(history, filename):\n",
229
+ " with open(filename, 'wb') as f:\n",
230
+ " pickle.dump(history.history, f)"
231
+ ]
232
+ },
233
+ {
234
+ "cell_type": "code",
235
+ "execution_count": 11,
236
+ "metadata": {
237
+ "id": "fuXsZWxke_ic"
238
+ },
239
+ "outputs": [],
240
+ "source": [
241
+ "def get_activation_model(model, conv_idx):\n",
242
+ " conv_layers = [layer for layer in model.layers if 'conv' in layer.name]\n",
243
+ " selected_layers = [layer for index, layer in enumerate(conv_layers) if index in conv_idx]\n",
244
+ " activation_model = Model(\n",
245
+ " inputs=model.inputs,\n",
246
+ " outputs=[layer.output for layer in selected_layers]\n",
247
+ " )\n",
248
+ " return activation_model"
249
+ ]
250
+ },
251
+ {
252
+ "cell_type": "code",
253
+ "execution_count": 15,
254
+ "metadata": {
255
+ "id": "W0Sda_34HCzQ"
256
+ },
257
+ "outputs": [],
258
+ "source": [
259
+ "def train_model(model,\n",
260
+ " train_data_dir,\n",
261
+ " validation_split=None,\n",
262
+ " batch_size=32,\n",
263
+ " use_default_augmentation=True,\n",
264
+ " augmentations=None,\n",
265
+ " epochs=30,\n",
266
+ " lr=1e-3,\n",
267
+ " loss='binary_crossentropy',\n",
268
+ " compile=True,\n",
269
+ " lr_decay=True,\n",
270
+ " decay_rate=0.10,\n",
271
+ " decay_limit=1e-6,\n",
272
+ " checkpoint=True,\n",
273
+ " stop_early=True,\n",
274
+ " monitor='val_accuracy',\n",
275
+ " mode='max',\n",
276
+ " patience=20,\n",
277
+ " tensorboard=True,\n",
278
+ " loss_curve=True):\n",
279
+ " \n",
280
+ "\n",
281
+ " train_generator, validation_generator = get_train_data_generator(\n",
282
+ " train_data_dir=train_data_dir,\n",
283
+ " batch_size=batch_size,\n",
284
+ " validation_split=validation_split,\n",
285
+ " use_default_augmentation=use_default_augmentation,\n",
286
+ " augmentations=augmentations\n",
287
+ " )\n",
288
+ "\n",
289
+ " callbacks = []\n",
290
+ " if checkpoint:\n",
291
+ " filepath = f'mesonet_trained.hdf5'\n",
292
+ " model_checkpoint = ModelCheckpoint(\n",
293
+ " filepath, monitor='val_accuracy', verbose=1,\n",
294
+ " save_best_only=True\n",
295
+ " )\n",
296
+ " callbacks.append(model_checkpoint)\n",
297
+ "\n",
298
+ " if stop_early:\n",
299
+ " callbacks.append(\n",
300
+ " EarlyStopping(\n",
301
+ " monitor=monitor,\n",
302
+ " mode=mode,\n",
303
+ " patience=patience,\n",
304
+ " verbose=1\n",
305
+ " )\n",
306
+ " )\n",
307
+ "\n",
308
+ "\n",
309
+ " history = model.fit(\n",
310
+ " train_generator,\n",
311
+ " epochs=epochs,\n",
312
+ " verbose=1,\n",
313
+ " callbacks=callbacks,\n",
314
+ " validation_data=validation_generator,\n",
315
+ " steps_per_epoch=train_generator.samples // batch_size,\n",
316
+ " validation_steps=validation_generator.samples // batch_size if validation_generator else None,\n",
317
+ " )\n",
318
+ "\n",
319
+ " return history"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": 14,
325
+ "metadata": {
326
+ "id": "aZtXFYPDoLZp"
327
+ },
328
+ "outputs": [
329
+ {
330
+ "ename": "OSError",
331
+ "evalue": "Unable to open file (file signature not found)",
332
+ "output_type": "error",
333
+ "traceback": [
334
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
335
+ "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
336
+ "Input \u001b[0;32mIn [14]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m model_exp \u001b[38;5;241m=\u001b[39m \u001b[43mload_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/pymycod/Deepfakes/Meso_4.ipynb\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
337
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# pylint: disable=broad-except\u001b[39;00m\n\u001b[1;32m 66\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[0;32m---> 67\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 69\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
338
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/h5py/_hl/files.py:507\u001b[0m, in \u001b[0;36mFile.__init__\u001b[0;34m(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, fs_strategy, fs_persist, fs_threshold, fs_page_size, page_buf_size, min_meta_keep, min_raw_keep, locking, **kwds)\u001b[0m\n\u001b[1;32m 502\u001b[0m fapl \u001b[38;5;241m=\u001b[39m make_fapl(driver, libver, rdcc_nslots, rdcc_nbytes, rdcc_w0,\n\u001b[1;32m 503\u001b[0m locking, page_buf_size, min_meta_keep, min_raw_keep, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[1;32m 504\u001b[0m fcpl \u001b[38;5;241m=\u001b[39m make_fcpl(track_order\u001b[38;5;241m=\u001b[39mtrack_order, fs_strategy\u001b[38;5;241m=\u001b[39mfs_strategy,\n\u001b[1;32m 505\u001b[0m fs_persist\u001b[38;5;241m=\u001b[39mfs_persist, fs_threshold\u001b[38;5;241m=\u001b[39mfs_threshold,\n\u001b[1;32m 506\u001b[0m fs_page_size\u001b[38;5;241m=\u001b[39mfs_page_size)\n\u001b[0;32m--> 507\u001b[0m fid \u001b[38;5;241m=\u001b[39m make_fid(name, mode, userblock_size, fapl, fcpl, swmr\u001b[38;5;241m=\u001b[39mswmr)\n\u001b[1;32m 509\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(libver, \u001b[38;5;28mtuple\u001b[39m):\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_libver \u001b[38;5;241m=\u001b[39m libver\n",
339
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/h5py/_hl/files.py:220\u001b[0m, in \u001b[0;36mmake_fid\u001b[0;34m(name, mode, userblock_size, fapl, fcpl, swmr)\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m swmr \u001b[38;5;129;01mand\u001b[39;00m swmr_support:\n\u001b[1;32m 219\u001b[0m flags \u001b[38;5;241m|\u001b[39m\u001b[38;5;241m=\u001b[39m h5f\u001b[38;5;241m.\u001b[39mACC_SWMR_READ\n\u001b[0;32m--> 220\u001b[0m fid \u001b[38;5;241m=\u001b[39m \u001b[43mh5f\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mflags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfapl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfapl\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 221\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mr+\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m 222\u001b[0m fid \u001b[38;5;241m=\u001b[39m h5f\u001b[38;5;241m.\u001b[39mopen(name, h5f\u001b[38;5;241m.\u001b[39mACC_RDWR, fapl\u001b[38;5;241m=\u001b[39mfapl)\n",
340
+ "File \u001b[0;32mh5py/_objects.pyx:54\u001b[0m, in \u001b[0;36mh5py._objects.with_phil.wrapper\u001b[0;34m()\u001b[0m\n",
341
+ "File \u001b[0;32mh5py/_objects.pyx:55\u001b[0m, in \u001b[0;36mh5py._objects.with_phil.wrapper\u001b[0;34m()\u001b[0m\n",
342
+ "File \u001b[0;32mh5py/h5f.pyx:106\u001b[0m, in \u001b[0;36mh5py.h5f.open\u001b[0;34m()\u001b[0m\n",
343
+ "\u001b[0;31mOSError\u001b[0m: Unable to open file (file signature not found)"
344
+ ]
345
+ }
346
+ ],
347
+ "source": [
348
+ "model_exp = load_model('/Users/jarvis/pymycod/Deepfakes/Meso_4.ipynb')"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": null,
354
+ "metadata": {
355
+ "colab": {
356
+ "base_uri": "https://localhost:8080/"
357
+ },
358
+ "id": "IC4V7HflFZC2",
359
+ "outputId": "c86ee986-baeb-449c-b024-d6ad7ecdaf2a"
360
+ },
361
+ "outputs": [
362
+ {
363
+ "name": "stdout",
364
+ "output_type": "stream",
365
+ "text": [
366
+ "Found 1945 images belonging to 2 classes.\n",
367
+ "31/31 [==============================] - 7s 235ms/step - loss: 0.0998 - accuracy: 0.9625\n"
368
+ ]
369
+ },
370
+ {
371
+ "data": {
372
+ "text/plain": [
373
+ "[0.09982584416866302, 0.9624678492546082]"
374
+ ]
375
+ },
376
+ "execution_count": 124,
377
+ "metadata": {
378
+ "tags": []
379
+ },
380
+ "output_type": "execute_result"
381
+ }
382
+ ],
383
+ "source": [
384
+ "evaluate_model(model_exp, 'data/test', 64)"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "code",
389
+ "execution_count": null,
390
+ "metadata": {
391
+ "colab": {
392
+ "base_uri": "https://localhost:8080/"
393
+ },
394
+ "id": "fG6V0lOzFeg2",
395
+ "outputId": "db1fec59-cd05-440f-9ae6-acaea21db0ea"
396
+ },
397
+ "outputs": [
398
+ {
399
+ "name": "stdout",
400
+ "output_type": "stream",
401
+ "text": [
402
+ "Found 1945 images belonging to 2 classes.\n",
403
+ "31/31 [==============================] - 7s 235ms/step\n",
404
+ " precision recall f1-score support\n",
405
+ "\n",
406
+ " 0 0.96 0.94 0.95 773\n",
407
+ " 1 0.96 0.97 0.97 1172\n",
408
+ "\n",
409
+ " accuracy 0.96 1945\n",
410
+ " macro avg 0.96 0.96 0.96 1945\n",
411
+ "weighted avg 0.96 0.96 0.96 1945\n",
412
+ "\n"
413
+ ]
414
+ }
415
+ ],
416
+ "source": [
417
+ "print(get_classification_report(model_exp, 'data/test'))"
418
+ ]
419
+ },
420
+ {
421
+ "cell_type": "code",
422
+ "execution_count": null,
423
+ "metadata": {
424
+ "id": "cjHCL4fiF29I"
425
+ },
426
+ "outputs": [],
427
+ "source": []
428
+ },
429
+ {
430
+ "cell_type": "code",
431
+ "execution_count": null,
432
+ "metadata": {
433
+ "colab": {
434
+ "base_uri": "https://localhost:8080/"
435
+ },
436
+ "id": "_z00HkaPG76d",
437
+ "outputId": "f3d07ca5-29dd-4191-ef04-e6ef04bf592a"
438
+ },
439
+ "outputs": [
440
+ {
441
+ "name": "stdout",
442
+ "output_type": "stream",
443
+ "text": [
444
+ "Found 1945 images belonging to 2 classes.\n",
445
+ "31/31 [==============================] - 8s 241ms/step - loss: 0.2321 - accuracy: 0.9080\n"
446
+ ]
447
+ },
448
+ {
449
+ "data": {
450
+ "text/plain": [
451
+ "[0.23209184408187866, 0.9079691767692566]"
452
+ ]
453
+ },
454
+ "execution_count": 129,
455
+ "metadata": {
456
+ "tags": []
457
+ },
458
+ "output_type": "execute_result"
459
+ }
460
+ ],
461
+ "source": [
462
+ "evaluate_model(model_exp, 'data/test', 64)"
463
+ ]
464
+ },
465
+ {
466
+ "cell_type": "code",
467
+ "execution_count": null,
468
+ "metadata": {
469
+ "colab": {
470
+ "base_uri": "https://localhost:8080/"
471
+ },
472
+ "id": "v3ZQN53bHBEf",
473
+ "outputId": "14bd2bd7-0c83-4e52-ee12-054a4e52ca9f"
474
+ },
475
+ "outputs": [
476
+ {
477
+ "name": "stdout",
478
+ "output_type": "stream",
479
+ "text": [
480
+ "Found 1945 images belonging to 2 classes.\n",
481
+ "31/31 [==============================] - 7s 234ms/step\n",
482
+ " precision recall f1-score support\n",
483
+ "\n",
484
+ " 0 0.90 0.87 0.88 773\n",
485
+ " 1 0.91 0.93 0.92 1172\n",
486
+ "\n",
487
+ " accuracy 0.91 1945\n",
488
+ " macro avg 0.91 0.90 0.90 1945\n",
489
+ "weighted avg 0.91 0.91 0.91 1945\n",
490
+ "\n"
491
+ ]
492
+ }
493
+ ],
494
+ "source": [
495
+ "print(get_classification_report(model_exp, 'data/test'))"
496
+ ]
497
+ }
498
+ ],
499
+ "metadata": {
500
+ "accelerator": "GPU",
501
+ "colab": {
502
+ "collapsed_sections": [],
503
+ "name": "Meso-4.ipynb",
504
+ "provenance": []
505
+ },
506
+ "kernelspec": {
507
+ "display_name": "Python 3",
508
+ "name": "python3"
509
+ },
510
+ "language_info": {
511
+ "codemirror_mode": {
512
+ "name": "ipython",
513
+ "version": 3
514
+ },
515
+ "file_extension": ".py",
516
+ "mimetype": "text/x-python",
517
+ "name": "python",
518
+ "nbconvert_exporter": "python",
519
+ "pygments_lexer": "ipython3",
520
+ "version": "3.8.13"
521
+ }
522
+ },
523
+ "nbformat": 4,
524
+ "nbformat_minor": 0
525
+ }
first.ipynb ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import cv2\n",
10
+ "import torch\n",
11
+ "from onnx2pytorch import ConvertModel\n",
12
+ "from keras.models import load_model\n",
13
+ "import onnx"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 3,
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "name": "stdout",
23
+ "output_type": "stream",
24
+ "text": [
25
+ "Metal device set to: Apple M1\n",
26
+ "\n",
27
+ "systemMemory: 8.00 GB\n",
28
+ "maxCacheSize: 2.67 GB\n",
29
+ "\n"
30
+ ]
31
+ },
32
+ {
33
+ "name": "stderr",
34
+ "output_type": "stream",
35
+ "text": [
36
+ "2024-02-01 19:38:26.414359: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.\n",
37
+ "2024-02-01 19:38:26.414541: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)\n"
38
+ ]
39
+ }
40
+ ],
41
+ "source": [
42
+ "\n",
43
+ "model1 = load_model('/Users/jarvis/pymycod/Deepfakes/DeepDetect/mesonet_trained.hdf5')"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {},
50
+ "outputs": [
51
+ {
52
+ "name": "stdout",
53
+ "output_type": "stream",
54
+ "text": [
55
+ "1/1 [==============================] - 0s 198ms/step\n",
56
+ "the image is realllll boii\n"
57
+ ]
58
+ },
59
+ {
60
+ "name": "stderr",
61
+ "output_type": "stream",
62
+ "text": [
63
+ "2024-02-01 14:03:47.045296: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n",
64
+ "2024-02-01 14:03:47.118034: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
65
+ ]
66
+ }
67
+ ],
68
+ "source": [
69
+ "import numpy as np\n",
70
+ "import keras.utils as image\n",
71
+ "\n",
72
+ "img_width, img_height = 256,256\n",
73
+ "img = image.load_img(f'/Users/jarvis/Downloads/im6.jpeg', target_size = (img_width, img_height))\n",
74
+ "img = image.img_to_array(img)\n",
75
+ "img = np.expand_dims(img, axis = 0)\n",
76
+ "ans = model1.predict(img)\n",
77
+ "if ans[0] ==0:\n",
78
+ " print(\"the image is fake afff\")\n",
79
+ "else:\n",
80
+ " print(\"the image is realllll boii\")"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "metadata": {},
87
+ "outputs": [
88
+ {
89
+ "ename": "DecodeError",
90
+ "evalue": "Wrong wire type in tag.",
91
+ "output_type": "error",
92
+ "traceback": [
93
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
94
+ "\u001b[0;31mDecodeError\u001b[0m Traceback (most recent call last)",
95
+ "Input \u001b[0;32mIn [11]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m onnx_model \u001b[38;5;241m=\u001b[39m \u001b[43monnx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
96
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/__init__.py:208\u001b[0m, in \u001b[0;36mload_model\u001b[0;34m(f, format, load_external_data)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model\u001b[39m(\n\u001b[1;32m 188\u001b[0m f: IO[\u001b[38;5;28mbytes\u001b[39m] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m os\u001b[38;5;241m.\u001b[39mPathLike,\n\u001b[1;32m 189\u001b[0m \u001b[38;5;28mformat\u001b[39m: _SupportedFormat \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 190\u001b[0m load_external_data: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 191\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ModelProto:\n\u001b[1;32m 192\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Loads a serialized ModelProto into memory.\u001b[39;00m\n\u001b[1;32m 193\u001b[0m \n\u001b[1;32m 194\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[38;5;124;03m Loaded in-memory ModelProto.\u001b[39;00m\n\u001b[1;32m 207\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 208\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43m_get_serializer\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeserialize_proto\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_load_bytes\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mModelProto\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m load_external_data:\n\u001b[1;32m 211\u001b[0m model_filepath \u001b[38;5;241m=\u001b[39m _get_file_path(f)\n",
97
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/serialization.py:118\u001b[0m, in \u001b[0;36m_ProtobufSerializer.deserialize_proto\u001b[0;34m(self, serialized, proto)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(serialized, \u001b[38;5;28mbytes\u001b[39m):\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 116\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mParameter \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mserialized\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m must be bytes, but got type: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(serialized)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[0;32m--> 118\u001b[0m decoded \u001b[38;5;241m=\u001b[39m typing\u001b[38;5;241m.\u001b[39mcast(Optional[\u001b[38;5;28mint\u001b[39m], \u001b[43mproto\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mParseFromString\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m decoded \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m decoded \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mlen\u001b[39m(serialized):\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m google\u001b[38;5;241m.\u001b[39mprotobuf\u001b[38;5;241m.\u001b[39mmessage\u001b[38;5;241m.\u001b[39mDecodeError(\n\u001b[1;32m 121\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mProtobuf decoding consumed too few bytes: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdecoded\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m out of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(serialized)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 122\u001b[0m )\n",
98
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/message.py:202\u001b[0m, in \u001b[0;36mMessage.ParseFromString\u001b[0;34m(self, serialized)\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Parse serialized protocol buffer data into this message.\u001b[39;00m\n\u001b[1;32m 195\u001b[0m \n\u001b[1;32m 196\u001b[0m \u001b[38;5;124;03mLike :func:`MergeFromString()`, except we clear the object first.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03m message.DecodeError if the input cannot be parsed.\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mClear()\n\u001b[0;32m--> 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMergeFromString\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m)\u001b[49m\n",
99
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/python_message.py:1128\u001b[0m, in \u001b[0;36m_AddMergeFromStringMethod.<locals>.MergeFromString\u001b[0;34m(self, serialized)\u001b[0m\n\u001b[1;32m 1126\u001b[0m length \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(serialized)\n\u001b[1;32m 1127\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1128\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_InternalParse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlength\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m!=\u001b[39m length:\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;66;03m# The only reason _InternalParse would return early is if it\u001b[39;00m\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;66;03m# encountered an end-group tag.\u001b[39;00m\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m message_mod\u001b[38;5;241m.\u001b[39mDecodeError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnexpected end-group tag.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 1132\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mIndexError\u001b[39;00m, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n\u001b[1;32m 1133\u001b[0m \u001b[38;5;66;03m# Now ord(buf[p:p+1]) == ord('') gets TypeError.\u001b[39;00m\n",
100
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/python_message.py:1181\u001b[0m, in \u001b[0;36m_AddMergeFromStringMethod.<locals>.InternalParse\u001b[0;34m(self, buffer, pos, end)\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[38;5;66;03m# TODO(jieluo): remove old_pos.\u001b[39;00m\n\u001b[1;32m 1180\u001b[0m old_pos \u001b[38;5;241m=\u001b[39m new_pos\n\u001b[0;32m-> 1181\u001b[0m (data, new_pos) \u001b[38;5;241m=\u001b[39m \u001b[43mdecoder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_DecodeUnknownField\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1182\u001b[0m \u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_pos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwire_type\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m 1183\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_pos \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 1184\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pos\n",
101
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/decoder.py:965\u001b[0m, in \u001b[0;36m_DecodeUnknownField\u001b[0;34m(buffer, pos, wire_type)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 964\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 965\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _DecodeError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWrong wire type in tag.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 967\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (data, pos)\n",
102
+ "\u001b[0;31mDecodeError\u001b[0m: Wrong wire type in tag."
103
+ ]
104
+ }
105
+ ],
106
+ "source": [
107
+ "\n",
108
+ "onnx_model = onnx.load('/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx')\n",
109
+ "# pytorch_model = ConvertModel(onnx_model)"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "\n",
119
+ "def load_img_modality_model(args):\n",
120
+ " '''Loads image modality model.'''\n",
121
+ " rgb_encoder = pytorch_model\n",
122
+ "\n",
123
+ " ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))\n",
124
+ " rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)\n",
125
+ " rgb_encoder.eval()\n",
126
+ " return rgb_encoder\n",
127
+ "img_model = load_img_modality_model(args)\n",
128
+ "\n",
129
+ "def preprocess_img(face):\n",
130
+ " face = face / 255\n",
131
+ " face = cv2.resize(face, (256, 256))\n",
132
+ " # face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)\n",
133
+ " face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0) \n",
134
+ " return face_pt\n",
135
+ "def preprocess_video(input_video, n_frames = 3):\n",
136
+ " v_cap = cv2.VideoCapture(input_video)\n",
137
+ " v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
138
+ "\n",
139
+ " # Pick 'n_frames' evenly spaced frames to sample\n",
140
+ " if n_frames is None:\n",
141
+ " sample = np.arange(0, v_len)\n",
142
+ " else:\n",
143
+ " sample = np.linspace(0, v_len - 1, n_frames).astype(int)\n",
144
+ "\n",
145
+ " #Loop through frames.\n",
146
+ " frames = []\n",
147
+ " for j in range(v_len):\n",
148
+ " success = v_cap.grab()\n",
149
+ " if j in sample:\n",
150
+ " # Load frame\n",
151
+ " success, frame = v_cap.retrieve()\n",
152
+ " if not success:\n",
153
+ " continue\n",
154
+ " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
155
+ " frame = preprocess_img(frame)\n",
156
+ " frames.append(frame)\n",
157
+ " v_cap.release()\n",
158
+ " return frames\n",
159
+ "\n",
160
+ "\n",
161
+ "def deepfakes_video_predict(input_video):\n",
162
+ " '''Perform inference on a video.'''\n",
163
+ " video_frames = preprocess_video(input_video)\n",
164
+ " real_faces_list = []\n",
165
+ " fake_faces_list = []\n",
166
+ "\n",
167
+ " for face in video_frames:\n",
168
+ " # face = preprocess_img(face)\n",
169
+ "\n",
170
+ " img_grads = img_model.forward(face)\n",
171
+ " img_grads = img_grads.cpu().detach().numpy()\n",
172
+ " img_grads_np = np.squeeze(img_grads)\n",
173
+ " real_faces_list.append(img_grads_np[0])\n",
174
+ " fake_faces_list.append(img_grads_np[1])\n",
175
+ "\n",
176
+ " real_faces_mean = np.mean(real_faces_list)\n",
177
+ " fake_faces_mean = np.mean(fake_faces_list)\n",
178
+ "\n",
179
+ " if real_faces_mean > 0.5:\n",
180
+ " preds = round(real_faces_mean * 100, 3)\n",
181
+ " text2 = f\"The video is REAL. \\nConfidence score is: {preds}%\"\n",
182
+ "\n",
183
+ " else:\n",
184
+ " preds = round(fake_faces_mean * 100, 3)\n",
185
+ " text2 = f\"The video is FAKE. \\nConfidence score is: {preds}%\"\n",
186
+ "\n",
187
+ " return text2"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": null,
193
+ "metadata": {},
194
+ "outputs": [
195
+ {
196
+ "ename": "AttributeError",
197
+ "evalue": "'Functional' object has no attribute 'forward'",
198
+ "output_type": "error",
199
+ "traceback": [
200
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
201
+ "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
202
+ "Input \u001b[0;32mIn [25]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdeepfakes_video_predict\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/Documents/Ss/ras_df.mov\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
203
+ "Input \u001b[0;32mIn [24]\u001b[0m, in \u001b[0;36mdeepfakes_video_predict\u001b[0;34m(input_video)\u001b[0m\n\u001b[1;32m 37\u001b[0m fake_faces_list \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m face \u001b[38;5;129;01min\u001b[39;00m video_frames:\n\u001b[1;32m 40\u001b[0m \u001b[38;5;66;03m# face = preprocess_img(face)\u001b[39;00m\n\u001b[0;32m---> 42\u001b[0m img_grads \u001b[38;5;241m=\u001b[39m \u001b[43mmodel1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforward\u001b[49m(face)\n\u001b[1;32m 43\u001b[0m img_grads \u001b[38;5;241m=\u001b[39m img_grads\u001b[38;5;241m.\u001b[39mcpu()\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mnumpy()\n\u001b[1;32m 44\u001b[0m img_grads_np \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39msqueeze(img_grads)\n",
204
+ "\u001b[0;31mAttributeError\u001b[0m: 'Functional' object has no attribute 'forward'"
205
+ ]
206
+ }
207
+ ],
208
+ "source": [
209
+ "deepfakes_video_predict(\"/Users/jarvis/Documents/Ss/ras_df.mov\")"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": null,
215
+ "metadata": {},
216
+ "outputs": [
217
+ {
218
+ "ename": "ValidationError",
219
+ "evalue": "Unable to parse proto from file: /Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx. Please check if it is a valid protobuf file of proto. ",
220
+ "output_type": "error",
221
+ "traceback": [
222
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
223
+ "\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
224
+ "Input \u001b[0;32mIn [10]\u001b[0m, in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01monnx\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m checker\n\u001b[0;32m----> 3\u001b[0m \u001b[43mchecker\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
225
+ "File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/checker.py:137\u001b[0m, in \u001b[0;36mcheck_model\u001b[0;34m(model, full_check, skip_opset_compatibility_check)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;66;03m# If model is a path instead of ModelProto\u001b[39;00m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, (\u001b[38;5;28mstr\u001b[39m, os\u001b[38;5;241m.\u001b[39mPathLike)):\n\u001b[0;32m--> 137\u001b[0m \u001b[43mC\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_model_path\u001b[49m\u001b[43m(\u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfspath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfull_check\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskip_opset_compatibility_check\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 139\u001b[0m protobuf_string \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 140\u001b[0m model \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, \u001b[38;5;28mbytes\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m model\u001b[38;5;241m.\u001b[39mSerializeToString()\n\u001b[1;32m 141\u001b[0m )\n",
226
+ "\u001b[0;31mValidationError\u001b[0m: Unable to parse proto from file: /Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx. Please check if it is a valid protobuf file of proto. "
227
+ ]
228
+ }
229
+ ],
230
+ "source": [
231
+ "from onnx import checker\n",
232
+ "\n",
233
+ "checker.check_model(\"/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\")\n"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": null,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": []
242
+ }
243
+ ],
244
+ "metadata": {
245
+ "kernelspec": {
246
+ "display_name": "tensor",
247
+ "language": "python",
248
+ "name": "python3"
249
+ },
250
+ "language_info": {
251
+ "codemirror_mode": {
252
+ "name": "ipython",
253
+ "version": 3
254
+ },
255
+ "file_extension": ".py",
256
+ "mimetype": "text/x-python",
257
+ "name": "python",
258
+ "nbconvert_exporter": "python",
259
+ "pygments_lexer": "ipython3",
260
+ "version": "3.8.13"
261
+ }
262
+ },
263
+ "nbformat": 4,
264
+ "nbformat_minor": 2
265
+ }
gradio_api.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from gradio_client import Client
2
+
3
+ client = Client("http://127.0.0.1:7860/")
4
+ # result = client.predict(
5
+ # "C:\\Users\\hp\\Downloads\\im1.jpeg",api_name="/predict"
6
+ # )
7
+
8
+ result = client.predict({"video":"C:\\Users\\hp\\Downloads\\ras_df.mp4",
9
+ "subtitles":None}, api_name="/predict_1")
10
+ print(result)
inference_2.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import onnx
3
+ import torch
4
+ import argparse
5
+ import numpy as np
6
+ from models import image
7
+
8
+ import warnings
9
+ from onnx2pytorch import ConvertModel
10
+
11
+ warnings.filterwarnings("ignore", message="The given NumPy array is not writable")
12
+ with warnings.catch_warnings():
13
+ warnings.filterwarnings("ignore", message="The given NumPy array is not writable")
14
+ onnx_model = onnx.load('models/efficientnet.onnx')
15
+ pytorch_model = ConvertModel(onnx_model)
16
+ torch.manual_seed(42)
17
+
18
+
19
+ audio_args = { 'nb_samp': 64600, 'first_conv': 1024, 'in_channels': 1, 'filts': [20, [20, 20], [20, 128], [128, 128]], 'blocks': [2, 4],'nb_fc_node': 1024,'gru_node': 1024, 'nb_gru_layer': 3, 'nb_classes': 2}
20
+
21
+
22
+ def get_args(parser):
23
+ parser.add_argument("--batch_size", type=int, default=8)
24
+ parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
25
+ parser.add_argument("--LOAD_SIZE", type=int, default=256)
26
+ parser.add_argument("--FINE_SIZE", type=int, default=224)
27
+ parser.add_argument("--dropout", type=float, default=0.2)
28
+ parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
29
+ parser.add_argument("--hidden", nargs="*", type=int, default=[])
30
+ parser.add_argument("--hidden_sz", type=int, default=768)
31
+ parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
32
+ parser.add_argument("--img_hidden_sz", type=int, default=1024)
33
+ parser.add_argument("--include_bn", type=int, default=True)
34
+ parser.add_argument("--lr", type=float, default=1e-4)
35
+ parser.add_argument("--lr_factor", type=float, default=0.3)
36
+ parser.add_argument("--lr_patience", type=int, default=10)
37
+ parser.add_argument("--max_epochs", type=int, default=500)
38
+ parser.add_argument("--n_workers", type=int, default=12)
39
+ parser.add_argument("--name", type=str, default="MMDF")
40
+ parser.add_argument("--num_image_embeds", type=int, default=1)
41
+ parser.add_argument("--patience", type=int, default=20)
42
+ parser.add_argument("--savedir", type=str, default="./savepath/")
43
+ parser.add_argument("--seed", type=int, default=1)
44
+ parser.add_argument("--n_classes", type=int, default=2)
45
+ parser.add_argument("--annealing_epoch", type=int, default=10)
46
+ parser.add_argument("--device", type=str, default='cpu')
47
+ parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
48
+ parser.add_argument("--freeze_image_encoder", type=bool, default = False)
49
+ parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
50
+ parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
51
+ parser.add_argument("--augment_dataset", type = bool, default = True)
52
+
53
+ for key, value in audio_args.items():
54
+ parser.add_argument(f"--{key}", type=type(value), default=value)
55
+
56
+ def load_img_modality_model(args):
57
+ rgb_encoder = pytorch_model
58
+ ckpt = torch.load('models/model.pth', map_location = torch.device('cpu'))
59
+ rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
60
+ rgb_encoder.eval()
61
+ return rgb_encoder
62
+
63
+ def load_spec_modality_model(args):
64
+ spec_encoder = image.RawNet(args)
65
+ ckpt = torch.load('models/model.pth', map_location = torch.device('cpu'))
66
+ spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
67
+ spec_encoder.eval()
68
+ return spec_encoder
69
+
70
+ parser = argparse.ArgumentParser(description="Inference models")
71
+ get_args(parser)
72
+ args, remaining_args = parser.parse_known_args()
73
+ assert remaining_args == [], remaining_args
74
+ spec_model = load_spec_modality_model(args)
75
+ img_model = load_img_modality_model(args)
76
+
77
+ def preprocess_img(face):
78
+ face = face / 255
79
+ face = cv2.resize(face, (256, 256))
80
+ face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
81
+ return face_pt
82
+
83
+ def preprocess_audio(audio_file):
84
+ audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
85
+ return audio_pt
86
+
87
+ def df_spec_pred(input_audio):
88
+ x, _ = input_audio
89
+ audio = preprocess_audio(x)
90
+ spec_grads = spec_model.forward(audio)
91
+ spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
92
+ max_value = np.argmax(spec_grads_inv)
93
+ if max_value > 0.5:
94
+ preds = round(100 - (max_value*100), 3)
95
+ text2 = f"The audio is REAL."
96
+ else:
97
+ preds = round(max_value*100, 3)
98
+ text2 = f"The audio is FAKE."
99
+ return text2
100
+
101
+ def df_img_pred(input_image):
102
+ face = preprocess_img(input_image)
103
+ print(f"Face shape is: {face.shape}")
104
+ img_grads = img_model.forward(face)
105
+ img_grads = img_grads.cpu().detach().numpy()
106
+ img_grads_np = np.squeeze(img_grads)
107
+ if img_grads_np[0] > 0.5:
108
+ preds = round(img_grads_np[0] * 100, 3)
109
+ text2 = f"The image is REAL. \nConfidence score is: {preds}"
110
+ else:
111
+ preds = round(img_grads_np[1] * 100, 3)
112
+ text2 = f"The image is FAKE. \nConfidence score is: {preds}"
113
+ return text2
114
+
115
+ def preprocess_video(input_video, n_frames = 3):
116
+ v_cap = cv2.VideoCapture(input_video)
117
+ v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
118
+ if n_frames is None:
119
+ sample = np.arange(0, v_len)
120
+ else:
121
+ sample = np.linspace(0, v_len - 1, n_frames).astype(int)
122
+ frames = []
123
+ for j in range(v_len):
124
+ success = v_cap.grab()
125
+ if j in sample:
126
+ success, frame = v_cap.retrieve()
127
+ if not success:
128
+ continue
129
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
130
+ frame = preprocess_img(frame)
131
+ frames.append(frame)
132
+ v_cap.release()
133
+ return frames
134
+
135
+ def df_video_pred(input_video):
136
+ video_frames = preprocess_video(input_video)
137
+ real_faces_list = []
138
+ fake_faces_list = []
139
+ for face in video_frames:
140
+ img_grads = img_model.forward(face)
141
+ img_grads = img_grads.cpu().detach().numpy()
142
+ img_grads_np = np.squeeze(img_grads)
143
+ real_faces_list.append(img_grads_np[0])
144
+ fake_faces_list.append(img_grads_np[1])
145
+ real_faces_mean = np.mean(real_faces_list)
146
+ fake_faces_mean = np.mean(fake_faces_list)
147
+ if real_faces_mean > 0.5:
148
+ preds = round(real_faces_mean * 100, 3)
149
+ text2 = f"The video is REAL. \nConfidence score is: {preds}%"
150
+ else:
151
+ preds = round(fake_faces_mean * 100, 3)
152
+ text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
153
+ return text2