|
import streamlit as st |
|
import google.generativeai as genai |
|
from pathlib import Path |
|
import sqlite3 |
|
import pandas as pd |
|
|
|
st.set_page_config(page_title='SQL GENERATOR') |
|
st.title('SQL GENERATED WITH GENAI') |
|
|
|
secretKey = "AIzaSyAA_R5VXv1qjJ5jDMObkluREA8BxJO67RU" |
|
|
|
genai.configure(api_key = secretKey) |
|
|
|
generation_config = { |
|
"temperature": 0.4, |
|
"top_p": 1, |
|
"top_k": 32, |
|
"max_output_tokens": 4096, |
|
} |
|
|
|
safety_settings = [ |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE" |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_MEDIUM_AND_ABOVE" |
|
} |
|
] |
|
|
|
@st.cache_resource |
|
def load_model(model1,config1,safety1): |
|
return genai.GenerativeModel(model_name = model1, generation_config = config1, safety_settings = safety1) |
|
|
|
model = load_model("gemini-pro",generation_config,safety_settings) |
|
|
|
|
|
prompt_parts_1 = [ |
|
"You are an expert in converting English questions to SQL code! The SQL database has the name classicmodels and has the following tables - productlines, products, offices, employees, customers, payments, orders and orderdetails.\n\nFor example,\nExample 1 - How many Classic Cars are present?, the SQL command will be something like this\n SELECT COUNT(*) FROM products WHERE productLine = 'Classic Cars';\n\n\nExample 2 - What are the names of the cars having turnable front wheels?\n\nSELECT productName FROM products WHERE productDescription LIKE '%turnable front wheels%';\n\n\n Example 3 - What are the top 5 high performing products in terms of revenue?, the SQL command will be SELECT productName, SUM(quantityOrdered * priceEach) AS totalRevenue FROM orderdetails JOIN products ON products.productCode = orderdetails.productCode GROUP BY productName ORDER BY totalRevenue DESC LIMIT 5;\n\n\n Example 4 - What are the top 5 employees in terms of sales?, the SQL command will be SELECT e.employeeNumber, e.firstName || ' ' || e.lastName AS employeeName, SUM(od.quantityOrdered * od.priceEach) AS totalSales FROM employees e JOIN customers c ON e.employeeNumber = c.salesRepEmployeeNumber JOIN orders o ON c.customerNumber = o.customerNumber JOIN orderdetails od ON o.orderNumber = od.orderNumber GROUP BY e.employeeNumber, employeeName ORDER BY totalSales DESC LIMIT 5; \n\n\nExample 5 - \n\nSELECT productName FROM products WHERE quantityInStock = (SELECT MAX(quantityInStock) FROM products);\n\n\nExample 4 - \n\nSELECT productName FROM products WHERE quantityInStock = (SELECT MAX(quantityInStock) FROM products);\n\n\nDont include ``` and \\n in the output", |
|
] |
|
|
|
|
|
st.subheader('SHOW TABLE') |
|
input1=st.text_input("Enter table name") |
|
submit1=st.button("Show") |
|
if input1 is not None and submit1: |
|
conn = sqlite3.connect('data.sqlite') |
|
cur = conn.cursor() |
|
query = f"select * from {input1} limit 5" |
|
cur.execute(query) |
|
records = cur.fetchall() |
|
df1 = pd.read_sql_query(query, con=conn) |
|
conn.close() |
|
st.dataframe(df1) |
|
|
|
st.subheader("GENERATE SQL RESULT") |
|
question=st.text_input("Enter question related to the database") |
|
submit2=st.button("Run") |
|
if question is not None and submit2: |
|
prompt_parts = [prompt_parts_1[0], question] |
|
response = model.generate_content(prompt_parts) |
|
query1 = response.text |
|
conn1 = sqlite3.connect('data.sqlite') |
|
cur1 = conn1.cursor() |
|
cur1.execute(query1) |
|
records = cur1.fetchall() |
|
df2 = pd.read_sql_query(query1, con=conn1) |
|
conn1.close() |
|
st.dataframe(df2) |