Spaces:
Sleeping
Sleeping
nikunjcepatel
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from huggingface_hub import login
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Retrieve the Hugging Face token from the Space secrets
|
7 |
+
token = os.getenv("HF_TOKEN")
|
8 |
+
|
9 |
+
# Log in using the token
|
10 |
+
login(token=token)
|
11 |
+
|
12 |
+
|
13 |
+
# Load model and tokenizer
|
14 |
+
model_name = "openai-community/gpt2" #"meta-llama/Llama-3.2-3B" # Replace with the correct model name if necessary
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Define inference function
|
19 |
+
def generate_text(input_text):
|
20 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
21 |
+
outputs = model.generate(inputs["input_ids"], max_length=50, num_return_sequences=1)
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return response
|
24 |
+
|
25 |
+
# Create Gradio interface
|
26 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
27 |
+
|
28 |
+
# Launch the interface
|
29 |
+
iface.launch()
|