nikshep01's picture
Update app.py
b42d6cf verified
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from transformers import MarianMTModel, MarianTokenizer
# Define dataset class
class TranslationDataset(Dataset):
def __init__(self, source_sentences, target_sentences, tokenizer):
self.source_sentences = source_sentences
self.target_sentences = target_sentences
self.tokenizer = tokenizer
def __len__(self):
return len(self.source_sentences)
def __getitem__(self, idx):
source_text = self.source_sentences[idx]
target_text = self.target_sentences[idx]
source_tokens = self.tokenizer(source_text, return_tensors='pt', padding=True, truncation=True)
target_tokens = self.tokenizer(target_text, return_tensors='pt', padding=True, truncation=True)
return {'input_ids': source_tokens['input_ids'], 'labels': target_tokens['input_ids']}
# Define training function
def train(model, dataloader, optimizer, criterion, num_epochs):
model.train()
for epoch in range(num_epochs):
total_loss = 0.0
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
labels = batch['labels'].to(device)
optimizer.zero_grad()
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}')
# Load tokenizer and model
tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-fr')
model = MarianMTModel.from_pretrained('Helsinki-NLP/opus-mt-en-fr').to(device)
# Prepare dataset and dataloader
dataset = TranslationDataset(source_sentences, target_sentences, tokenizer)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# Define optimizer and criterion
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
criterion = nn.CrossEntropyLoss()
# Train the model
train(model, dataloader, optimizer, criterion, num_epochs=10)
# Save the trained model
torch.save(model.state_dict(), 'translation_model.pth')