Spaces:
Running
Running
from email.utils import parseaddr | |
from huggingface_hub import HfApi | |
import os | |
import datetime | |
import json | |
import pandas as pd | |
import gradio as gr | |
from eval_utils import get_evaluation_scores | |
LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard" | |
SUBMISSION_FORMAT = "predictions" | |
# RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results" | |
TOKEN = os.environ.get("TOKEN", None) | |
YEAR_VERSION = "2024" | |
api = HfApi(token=TOKEN) | |
def format_error(msg): | |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>" | |
def format_warning(msg): | |
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>" | |
def format_log(msg): | |
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>" | |
def model_hyperlink(link, model_name): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def input_verification(method_name, url, path_to_file, organisation, mail): | |
for input in [method_name, url, path_to_file, organisation, mail]: | |
if input == "": | |
return format_warning("Please fill all the fields.") | |
# Very basic email parsing | |
_, parsed_mail = parseaddr(mail) | |
if not "@" in parsed_mail: | |
return format_warning("Please provide a valid email adress.") | |
if path_to_file is None: | |
return format_warning("Please attach a file.") | |
# check the required fields | |
required_fields = ["Method", "Submitted By", "url", "organisation", "mail"] | |
# Check if the required_fields are not blank | |
for field in required_fields: | |
if field not in locals(): | |
raise gr.Error(f"{field} cannot be blank") | |
return parsed_mail | |
def add_new_eval( | |
method_name: str, | |
submitted_by: str, | |
url: str, | |
path_to_file: str, | |
organisation: str, | |
mail: str, | |
): | |
parsed_mail = input_verification( | |
method_name, | |
url, | |
path_to_file, | |
organisation, | |
mail, | |
) | |
# # load the file | |
# df = pd.read_csv(path_to_file) | |
# submission_df = pd.read_csv(path_to_file) | |
# # modify the df to include metadata | |
# df["Method"] = method_name | |
# df["url"] = url | |
# df["organisation"] = organisation | |
# df["mail"] = parsed_mail | |
# df["timestamp"] = datetime.datetime.now() | |
# submission_df = pd.read_csv(path_to_file) | |
# submission_df["Method"] = method_name | |
# submission_df["Submitted By"] = organisation | |
# # upload to spaces using the hf api at | |
# path_in_repo = f"submissions/{method_name}" | |
# file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv" | |
# upload the df to spaces | |
import io | |
if SUBMISSION_FORMAT == "predictions": | |
# read the submission json file | |
with open(path_to_file, "r") as f: | |
submission_data = json.load(f) | |
# read the gold json file | |
with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f: | |
gold_data = json.load(f) | |
submission = get_evaluation_scores(gold_data, submission_data) | |
else: | |
# read the submission json file | |
with open(path_to_file, "r") as f: | |
submission = json.load(f) | |
with open("submissions/baseline/results.json", "r") as f: | |
results = json.load(f) | |
# update the results | |
results.append(submission[0]) | |
leaderboard_buffer = io.BytesIO() | |
# df.to_csv(buffer, index=False) # Write the DataFrame to a buffer in CSV format | |
# buffer.seek(0) # Rewind the buffer to the beginning | |
# save the results to buffer | |
leaderboard_buffer.write(json.dumps(results).encode()) | |
leaderboard_buffer.seek(0) | |
# api.upload_file( | |
# repo_id=RESULTS_PATH, | |
# path_in_repo=f"{path_in_repo}/{file_name}", | |
# path_or_fileobj=buffer, | |
# token=TOKEN, | |
# repo_type="dataset", | |
# ) | |
# # read the leaderboard | |
# leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv") | |
# # append the new submission_df csv to the leaderboard | |
# # leaderboard_df = leaderboard_df._append(submission_df) | |
# # leaderboard_df = pd.concat([leaderboard_df, submission_df], ignore_index=True) | |
# # save the new leaderboard | |
# # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False) | |
# leaderboard_buffer = io.BytesIO() | |
# leaderboard_df.to_csv(leaderboard_buffer, index=False) | |
# leaderboard_buffer.seek(0) | |
# with open("submissions/baseline/results.json", "w") as f: | |
# json.dump(results, f) | |
api.upload_file( | |
repo_id=LEADERBOARD_PATH, | |
# path_in_repo=f"submissions/baseline/baseline.csv", | |
path_in_repo=f"submissions/baseline/results.json", | |
path_or_fileobj=leaderboard_buffer, | |
token=TOKEN, | |
repo_type="space", | |
) | |
return format_log( | |
f"Method {method_name} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed" | |
) | |