Spaces:
Paused
Paused
import math | |
from abc import abstractmethod | |
from dataclasses import dataclass | |
from numbers import Number | |
import torch as th | |
import torch.nn.functional as F | |
from choices import * | |
from config_base import BaseConfig | |
from torch import nn | |
from .nn import (avg_pool_nd, conv_nd, linear, normalization, | |
timestep_embedding, torch_checkpoint, zero_module) | |
class ScaleAt(Enum): | |
after_norm = 'afternorm' | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb=None, cond=None, lateral=None): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb=None, cond=None, lateral=None): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb=emb, cond=cond, lateral=lateral) | |
else: | |
x = layer(x) | |
return x | |
class ResBlockConfig(BaseConfig): | |
channels: int | |
emb_channels: int | |
dropout: float | |
out_channels: int = None | |
# condition the resblock with time (and encoder's output) | |
use_condition: bool = True | |
# whether to use 3x3 conv for skip path when the channels aren't matched | |
use_conv: bool = False | |
# dimension of conv (always 2 = 2d) | |
dims: int = 2 | |
# gradient checkpoint | |
use_checkpoint: bool = False | |
up: bool = False | |
down: bool = False | |
# whether to condition with both time & encoder's output | |
two_cond: bool = False | |
# number of encoders' output channels | |
cond_emb_channels: int = None | |
# suggest: False | |
has_lateral: bool = False | |
lateral_channels: int = None | |
# whether to init the convolution with zero weights | |
# this is default from BeatGANs and seems to help learning | |
use_zero_module: bool = True | |
def __post_init__(self): | |
self.out_channels = self.out_channels or self.channels | |
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels | |
def make_model(self): | |
return ResBlock(self) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
total layers: | |
in_layers | |
- norm | |
- act | |
- conv | |
out_layers | |
- norm | |
- (modulation) | |
- act | |
- conv | |
""" | |
def __init__(self, conf: ResBlockConfig): | |
super().__init__() | |
self.conf = conf | |
############################# | |
# IN LAYERS | |
############################# | |
assert conf.lateral_channels is None | |
layers = [ | |
normalization(conf.channels), | |
nn.SiLU(), | |
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1) | |
] | |
self.in_layers = nn.Sequential(*layers) | |
self.updown = conf.up or conf.down | |
if conf.up: | |
self.h_upd = Upsample(conf.channels, False, conf.dims) | |
self.x_upd = Upsample(conf.channels, False, conf.dims) | |
elif conf.down: | |
self.h_upd = Downsample(conf.channels, False, conf.dims) | |
self.x_upd = Downsample(conf.channels, False, conf.dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
############################# | |
# OUT LAYERS CONDITIONS | |
############################# | |
if conf.use_condition: | |
# condition layers for the out_layers | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear(conf.emb_channels, 2 * conf.out_channels), | |
) | |
if conf.two_cond: | |
self.cond_emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear(conf.cond_emb_channels, conf.out_channels), | |
) | |
############################# | |
# OUT LAYERS (ignored when there is no condition) | |
############################# | |
# original version | |
conv = conv_nd(conf.dims, | |
conf.out_channels, | |
conf.out_channels, | |
3, | |
padding=1) | |
if conf.use_zero_module: | |
# zere out the weights | |
# it seems to help training | |
conv = zero_module(conv) | |
# construct the layers | |
# - norm | |
# - (modulation) | |
# - act | |
# - dropout | |
# - conv | |
layers = [] | |
layers += [ | |
normalization(conf.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=conf.dropout), | |
conv, | |
] | |
self.out_layers = nn.Sequential(*layers) | |
############################# | |
# SKIP LAYERS | |
############################# | |
if conf.out_channels == conf.channels: | |
# cannot be used with gatedconv, also gatedconv is alsways used as the first block | |
self.skip_connection = nn.Identity() | |
else: | |
if conf.use_conv: | |
kernel_size = 3 | |
padding = 1 | |
else: | |
kernel_size = 1 | |
padding = 0 | |
self.skip_connection = conv_nd(conf.dims, | |
conf.channels, | |
conf.out_channels, | |
kernel_size, | |
padding=padding) | |
def forward(self, x, emb=None, cond=None, lateral=None): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
Args: | |
x: input | |
lateral: lateral connection from the encoder | |
""" | |
return torch_checkpoint(self._forward, (x, emb, cond, lateral), | |
self.conf.use_checkpoint) | |
def _forward( | |
self, | |
x, | |
emb=None, | |
cond=None, | |
lateral=None, | |
): | |
""" | |
Args: | |
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally | |
""" | |
if self.conf.has_lateral: | |
# lateral may be supplied even if it doesn't require | |
# the model will take the lateral only if "has_lateral" | |
assert lateral is not None | |
x = th.cat([x, lateral], dim=1) | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
if self.conf.use_condition: | |
# it's possible that the network may not receieve the time emb | |
# this happens with autoenc and setting the time_at | |
if emb is not None: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
else: | |
emb_out = None | |
if self.conf.two_cond: | |
# it's possible that the network is two_cond | |
# but it doesn't get the second condition | |
# in which case, we ignore the second condition | |
# and treat as if the network has one condition | |
if cond is None: | |
cond_out = None | |
else: | |
cond_out = self.cond_emb_layers(cond).type(h.dtype) | |
if cond_out is not None: | |
while len(cond_out.shape) < len(h.shape): | |
cond_out = cond_out[..., None] | |
else: | |
cond_out = None | |
# this is the new refactored code | |
h = apply_conditions( | |
h=h, | |
emb=emb_out, | |
cond=cond_out, | |
layers=self.out_layers, | |
scale_bias=1, | |
in_channels=self.conf.out_channels, | |
up_down_layer=None, | |
) | |
return self.skip_connection(x) + h | |
def apply_conditions( | |
h, | |
emb=None, | |
cond=None, | |
layers: nn.Sequential = None, | |
scale_bias: float = 1, | |
in_channels: int = 512, | |
up_down_layer: nn.Module = None, | |
): | |
""" | |
apply conditions on the feature maps | |
Args: | |
emb: time conditional (ready to scale + shift) | |
cond: encoder's conditional (read to scale + shift) | |
""" | |
two_cond = emb is not None and cond is not None | |
if emb is not None: | |
# adjusting shapes | |
while len(emb.shape) < len(h.shape): | |
emb = emb[..., None] | |
if two_cond: | |
# adjusting shapes | |
while len(cond.shape) < len(h.shape): | |
cond = cond[..., None] | |
# time first | |
scale_shifts = [emb, cond] | |
else: | |
# "cond" is not used with single cond mode | |
scale_shifts = [emb] | |
# support scale, shift or shift only | |
for i, each in enumerate(scale_shifts): | |
if each is None: | |
# special case: the condition is not provided | |
a = None | |
b = None | |
else: | |
if each.shape[1] == in_channels * 2: | |
a, b = th.chunk(each, 2, dim=1) | |
else: | |
a = each | |
b = None | |
scale_shifts[i] = (a, b) | |
# condition scale bias could be a list | |
if isinstance(scale_bias, Number): | |
biases = [scale_bias] * len(scale_shifts) | |
else: | |
# a list | |
biases = scale_bias | |
# default, the scale & shift are applied after the group norm but BEFORE SiLU | |
pre_layers, post_layers = layers[0], layers[1:] | |
# spilt the post layer to be able to scale up or down before conv | |
# post layers will contain only the conv | |
mid_layers, post_layers = post_layers[:-2], post_layers[-2:] | |
h = pre_layers(h) | |
# scale and shift for each condition | |
for i, (scale, shift) in enumerate(scale_shifts): | |
# if scale is None, it indicates that the condition is not provided | |
if scale is not None: | |
h = h * (biases[i] + scale) | |
if shift is not None: | |
h = h + shift | |
h = mid_layers(h) | |
# upscale or downscale if any just before the last conv | |
if up_down_layer is not None: | |
h = up_down_layer(h) | |
h = post_layers(h) | |
return h | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, | |
self.channels, | |
self.out_channels, | |
3, | |
padding=1) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), | |
mode="nearest") | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd(dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=1) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
use_checkpoint=False, | |
use_new_attention_order=False, | |
): | |
super().__init__() | |
self.channels = channels | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.use_checkpoint = use_checkpoint | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, channels * 3, 1) | |
if use_new_attention_order: | |
# split qkv before split heads | |
self.attention = QKVAttention(self.num_heads) | |
else: | |
# split heads before split qkv | |
self.attention = QKVAttentionLegacy(self.num_heads) | |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
def forward(self, x): | |
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint) | |
def _forward(self, x): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
h = self.attention(qkv) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
def count_flops_attn(model, _x, y): | |
""" | |
A counter for the `thop` package to count the operations in an | |
attention operation. | |
Meant to be used like: | |
macs, params = thop.profile( | |
model, | |
inputs=(inputs, timestamps), | |
custom_ops={QKVAttention: QKVAttention.count_flops}, | |
) | |
""" | |
b, c, *spatial = y[0].shape | |
num_spatial = int(np.prod(spatial)) | |
# We perform two matmuls with the same number of ops. | |
# The first computes the weight matrix, the second computes | |
# the combination of the value vectors. | |
matmul_ops = 2 * b * (num_spatial**2) * c | |
model.total_ops += th.DoubleTensor([matmul_ops]) | |
class QKVAttentionLegacy(nn.Module): | |
""" | |
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, | |
dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", q * scale, | |
k * scale) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention and splits in a different order. | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.chunk(3, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", | |
(q * scale).view(bs * self.n_heads, ch, length), | |
(k * scale).view(bs * self.n_heads, ch, length), | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, | |
v.reshape(bs * self.n_heads, ch, length)) | |
return a.reshape(bs, -1, length) | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
class AttentionPool2d(nn.Module): | |
""" | |
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py | |
""" | |
def __init__( | |
self, | |
spacial_dim: int, | |
embed_dim: int, | |
num_heads_channels: int, | |
output_dim: int = None, | |
): | |
super().__init__() | |
self.positional_embedding = nn.Parameter( | |
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5) | |
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) | |
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) | |
self.num_heads = embed_dim // num_heads_channels | |
self.attention = QKVAttention(self.num_heads) | |
def forward(self, x): | |
b, c, *_spatial = x.shape | |
x = x.reshape(b, c, -1) # NC(HW) | |
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) | |
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) | |
x = self.qkv_proj(x) | |
x = self.attention(x) | |
x = self.c_proj(x) | |
return x[:, :, 0] | |