Spaces:
Starting
on
T4
Starting
on
T4
# modified from https://github.com/anhtuan85/Data-Augmentation-for-Object-Detection/blob/master/augmentation.ipynb | |
import PIL #version 1.2.0 | |
from PIL import Image #version 6.1.0 | |
import torch | |
import os | |
import torchvision.transforms.functional as F | |
import numpy as np | |
import random | |
from .random_crop import random_crop | |
from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh | |
class AdjustContrast: | |
def __init__(self, contrast_factor): | |
self.contrast_factor = contrast_factor | |
def __call__(self, img, target): | |
""" | |
img (PIL Image or Tensor): Image to be adjusted. | |
""" | |
_contrast_factor = ((random.random() + 1.0) / 2.0) * self.contrast_factor | |
img = F.adjust_contrast(img, _contrast_factor) | |
return img, target | |
class AdjustBrightness: | |
def __init__(self, brightness_factor): | |
self.brightness_factor = brightness_factor | |
def __call__(self, img, target): | |
""" | |
img (PIL Image or Tensor): Image to be adjusted. | |
""" | |
_brightness_factor = ((random.random() + 1.0) / 2.0) * self.brightness_factor | |
img = F.adjust_brightness(img, _brightness_factor) | |
return img, target | |
def lighting_noise(image): | |
''' | |
color channel swap in image | |
image: A PIL image | |
''' | |
new_image = image | |
perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2), | |
(1, 2, 0), (2, 0, 1), (2, 1, 0)) | |
swap = perms[random.randint(0, len(perms)- 1)] | |
new_image = F.to_tensor(new_image) | |
new_image = new_image[swap, :, :] | |
new_image = F.to_pil_image(new_image) | |
return new_image | |
class LightingNoise: | |
def __init__(self) -> None: | |
pass | |
def __call__(self, img, target): | |
return lighting_noise(img), target | |
def rotate(image, boxes, angle): | |
''' | |
Rotate image and bounding box | |
image: A Pil image (w, h) | |
boxes: A tensors of dimensions (#objects, 4) | |
Out: rotated image (w, h), rotated boxes | |
''' | |
new_image = image.copy() | |
new_boxes = boxes.clone() | |
#Rotate image, expand = True | |
w = image.width | |
h = image.height | |
cx = w/2 | |
cy = h/2 | |
new_image = new_image.rotate(angle, expand=True) | |
angle = np.radians(angle) | |
alpha = np.cos(angle) | |
beta = np.sin(angle) | |
#Get affine matrix | |
AffineMatrix = torch.tensor([[alpha, beta, (1-alpha)*cx - beta*cy], | |
[-beta, alpha, beta*cx + (1-alpha)*cy]]) | |
#Rotation boxes | |
box_width = (boxes[:,2] - boxes[:,0]).reshape(-1,1) | |
box_height = (boxes[:,3] - boxes[:,1]).reshape(-1,1) | |
#Get corners for boxes | |
x1 = boxes[:,0].reshape(-1,1) | |
y1 = boxes[:,1].reshape(-1,1) | |
x2 = x1 + box_width | |
y2 = y1 | |
x3 = x1 | |
y3 = y1 + box_height | |
x4 = boxes[:,2].reshape(-1,1) | |
y4 = boxes[:,3].reshape(-1,1) | |
corners = torch.stack((x1,y1,x2,y2,x3,y3,x4,y4), dim= 1) | |
# corners.reshape(-1, 8) #Tensors of dimensions (#objects, 8) | |
corners = corners.reshape(-1,2) #Tensors of dimension (4* #objects, 2) | |
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim= 1) #(Tensors of dimension (4* #objects, 3)) | |
cos = np.abs(AffineMatrix[0, 0]) | |
sin = np.abs(AffineMatrix[0, 1]) | |
nW = int((h * sin) + (w * cos)) | |
nH = int((h * cos) + (w * sin)) | |
AffineMatrix[0, 2] += (nW / 2) - cx | |
AffineMatrix[1, 2] += (nH / 2) - cy | |
#Apply affine transform | |
rotate_corners = torch.mm(AffineMatrix, corners.t().to(torch.float64)).t() | |
rotate_corners = rotate_corners.reshape(-1,8) | |
x_corners = rotate_corners[:,[0,2,4,6]] | |
y_corners = rotate_corners[:,[1,3,5,7]] | |
#Get (x_min, y_min, x_max, y_max) | |
x_min, _ = torch.min(x_corners, dim= 1) | |
x_min = x_min.reshape(-1, 1) | |
y_min, _ = torch.min(y_corners, dim= 1) | |
y_min = y_min.reshape(-1, 1) | |
x_max, _ = torch.max(x_corners, dim= 1) | |
x_max = x_max.reshape(-1, 1) | |
y_max, _ = torch.max(y_corners, dim= 1) | |
y_max = y_max.reshape(-1, 1) | |
new_boxes = torch.cat((x_min, y_min, x_max, y_max), dim= 1) | |
scale_x = new_image.width / w | |
scale_y = new_image.height / h | |
#Resize new image to (w, h) | |
new_image = new_image.resize((w, h)) | |
#Resize boxes | |
new_boxes /= torch.Tensor([scale_x, scale_y, scale_x, scale_y]) | |
new_boxes[:, 0] = torch.clamp(new_boxes[:, 0], 0, w) | |
new_boxes[:, 1] = torch.clamp(new_boxes[:, 1], 0, h) | |
new_boxes[:, 2] = torch.clamp(new_boxes[:, 2], 0, w) | |
new_boxes[:, 3] = torch.clamp(new_boxes[:, 3], 0, h) | |
return new_image, new_boxes | |
# def convert_xywh_to_xyxy(boxes: torch.Tensor): | |
# _boxes = boxes.clone() | |
# box_xy = _boxes[:, :2] | |
# box_wh = _boxes[:, 2:] | |
# box_x1y1 = box_xy - box_wh/2 | |
# box_x2y2 = box_xy + box_wh/2 | |
# box_xyxy = torch.cat((box_x1y1, box_x2y2), dim=-1) | |
# return box_xyxy | |
class Rotate: | |
def __init__(self, angle=10) -> None: | |
self.angle = angle | |
def __call__(self, img, target): | |
w,h = img.size | |
whwh = torch.Tensor([w, h, w, h]) | |
boxes_xyxy = box_cxcywh_to_xyxy(target['boxes']) * whwh | |
img, boxes_new = rotate(img, boxes_xyxy, self.angle) | |
target['boxes'] = box_xyxy_to_cxcywh(boxes_new).to(boxes_xyxy.dtype) / (whwh + 1e-3) | |
return img, target | |
class RandomCrop: | |
def __init__(self) -> None: | |
pass | |
def __call__(self, img, target): | |
w,h = img.size | |
try: | |
boxes_xyxy = target['boxes'] | |
labels = target['labels'] | |
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels) | |
target['boxes'] = new_boxes | |
target['labels'] = new_labels | |
except Exception as e: | |
pass | |
return img, target | |
class RandomCropDebug: | |
def __init__(self) -> None: | |
pass | |
def __call__(self, img, target): | |
boxes_xyxy = target['boxes'].clone() | |
labels = target['labels'].clone() | |
img, new_boxes, new_labels, _ = random_crop(img, boxes_xyxy, labels) | |
target['boxes'] = new_boxes | |
target['labels'] = new_labels | |
return img, target | |
class RandomSelectMulti(object): | |
""" | |
Randomly selects between transforms1 and transforms2, | |
""" | |
def __init__(self, transformslist, p=-1): | |
self.transformslist = transformslist | |
self.p = p | |
assert p == -1 | |
def __call__(self, img, target): | |
if self.p == -1: | |
return random.choice(self.transformslist)(img, target) | |
class Albumentations: | |
def __init__(self): | |
import albumentations as A | |
self.transform = A.Compose([ | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(p=0.005), | |
A.RandomGamma(p=0.005), | |
A.ImageCompression(quality_lower=75, p=0.005)], | |
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels'])) | |
def __call__(self, img, target, p=1.0): | |
""" | |
Input: | |
target['boxes']: xyxy, unnormalized data. | |
""" | |
boxes_raw = target['boxes'] | |
labels_raw = target['labels'] | |
img_np = np.array(img) | |
if self.transform and random.random() < p: | |
new_res = self.transform(image=img_np, bboxes=boxes_raw, class_labels=labels_raw) # transformed | |
boxes_new = torch.Tensor(new_res['bboxes']).to(boxes_raw.dtype).reshape_as(boxes_raw) | |
img_np = new_res['image'] | |
labels_new = torch.Tensor(new_res['class_labels']).to(labels_raw.dtype) | |
img_new = Image.fromarray(img_np) | |
target['boxes'] = boxes_new | |
target['labels'] = labels_new | |
return img_new, target |