Spaces:
Sleeping
Sleeping
Nikhil Singh
commited on
Commit
·
767cd38
1
Parent(s):
b10c920
t5 fix
Browse files
app.py
CHANGED
@@ -42,24 +42,16 @@ def get_sentences(further_cleaned_text):
|
|
42 |
def get_model(model_name: str = None, multilingual: bool = False):
|
43 |
if model_name is None:
|
44 |
model_name = "urchade/gliner_base" if not multilingual else "urchade/gliner_multilingual"
|
45 |
-
|
46 |
-
global _MODEL
|
47 |
-
|
48 |
-
if _MODEL.get(model_name) is None:
|
49 |
_MODEL[model_name] = GLiNER.from_pretrained(model_name, cache_dir=_CACHE_DIR)
|
50 |
-
|
51 |
return _MODEL[model_name]
|
52 |
|
53 |
-
def parse_query(sentences
|
54 |
-
model = get_model(model_name, multilingual
|
55 |
-
|
56 |
results = []
|
57 |
-
|
58 |
for sentence in sentences:
|
59 |
_entities = model.predict_entities(sentence, labels, threshold=threshold)
|
60 |
-
|
61 |
-
results.extend(entities)
|
62 |
-
|
63 |
return results
|
64 |
|
65 |
def refine_entities_with_t5(entities):
|
@@ -74,34 +66,25 @@ def present(email_file, labels, multilingual=False):
|
|
74 |
cleaned_text = clean_email(email)
|
75 |
further_cleaned_text = remove_special_characters(cleaned_text)
|
76 |
sentence_list = get_sentences(further_cleaned_text)
|
77 |
-
|
78 |
entities = parse_query(sentence_list, labels, threshold=0.3, nested_ner=False, model_name="urchade/gliner_base", multilingual=multilingual)
|
79 |
-
|
80 |
-
# Format entities for DataFrame: Convert list of dicts to list of lists
|
81 |
-
entities = [[entity['text'], entity['label']] for entity in entities]
|
82 |
-
|
83 |
refined_entities = refine_entities_with_t5(entities)
|
84 |
-
|
85 |
email_info = {
|
86 |
"Subject": email.subject,
|
87 |
"From": email.from_,
|
88 |
"To": email.to,
|
89 |
"Date": email.date,
|
90 |
-
"Extracted Entities":
|
|
|
91 |
}
|
92 |
-
return [email_info[key] for key in
|
93 |
|
94 |
labels = ["PERSON", "PRODUCT", "DEAL", "ORDER", "ORDER PAYMENT METHOD", "STORE", "LEGAL ENTITY", "MERCHANT", "FINANCIAL TRANSACTION", "UNCATEGORIZED", "DATE"]
|
95 |
|
96 |
demo = gr.Interface(
|
97 |
-
fn=present,
|
98 |
inputs=[
|
99 |
gr.components.File(label="Upload Email (.eml file)"),
|
100 |
-
gr.components.CheckboxGroup(
|
101 |
-
choices=labels,
|
102 |
-
label="Labels to Detect",
|
103 |
-
value=labels, # Default all selected
|
104 |
-
),
|
105 |
gr.components.Checkbox(label="Use Multilingual Model")
|
106 |
],
|
107 |
outputs=[
|
@@ -112,7 +95,6 @@ demo = gr.Interface(
|
|
112 |
gr.components.Dataframe(headers=["Text", "Label"], label="Extracted Entities"),
|
113 |
gr.components.Textbox(label="Refined Entities")
|
114 |
],
|
115 |
-
layout="horizontal",
|
116 |
title="Email Info Extractor",
|
117 |
description="Upload an email file (.eml) to extract its details and detected entities."
|
118 |
)
|
|
|
42 |
def get_model(model_name: str = None, multilingual: bool = False):
|
43 |
if model_name is None:
|
44 |
model_name = "urchade/gliner_base" if not multilingual else "urchade/gliner_multilingual"
|
45 |
+
if model_name not in _MODEL:
|
|
|
|
|
|
|
46 |
_MODEL[model_name] = GLiNER.from_pretrained(model_name, cache_dir=_CACHE_DIR)
|
|
|
47 |
return _MODEL[model_name]
|
48 |
|
49 |
+
def parse_query(sentences, labels, threshold=0.3, nested_ner=False, model_name=None, multilingual=False):
|
50 |
+
model = get_model(model_name, multilingual)
|
|
|
51 |
results = []
|
|
|
52 |
for sentence in sentences:
|
53 |
_entities = model.predict_entities(sentence, labels, threshold=threshold)
|
54 |
+
results.extend([{"text": entity["text"], "label": entity["label"]} for entity in _entities])
|
|
|
|
|
55 |
return results
|
56 |
|
57 |
def refine_entities_with_t5(entities):
|
|
|
66 |
cleaned_text = clean_email(email)
|
67 |
further_cleaned_text = remove_special_characters(cleaned_text)
|
68 |
sentence_list = get_sentences(further_cleaned_text)
|
|
|
69 |
entities = parse_query(sentence_list, labels, threshold=0.3, nested_ner=False, model_name="urchade/gliner_base", multilingual=multilingual)
|
|
|
|
|
|
|
|
|
70 |
refined_entities = refine_entities_with_t5(entities)
|
|
|
71 |
email_info = {
|
72 |
"Subject": email.subject,
|
73 |
"From": email.from_,
|
74 |
"To": email.to,
|
75 |
"Date": email.date,
|
76 |
+
"Extracted Entities": entities, # Prepare entities for DataFrame if needed
|
77 |
+
"Refined Entities": refined_entities
|
78 |
}
|
79 |
+
return [email_info[key] for key in ["Subject", "From", "To", "Date", "Extracted Entities", "Refined Entities"]]
|
80 |
|
81 |
labels = ["PERSON", "PRODUCT", "DEAL", "ORDER", "ORDER PAYMENT METHOD", "STORE", "LEGAL ENTITY", "MERCHANT", "FINANCIAL TRANSACTION", "UNCATEGORIZED", "DATE"]
|
82 |
|
83 |
demo = gr.Interface(
|
84 |
+
fn=present,
|
85 |
inputs=[
|
86 |
gr.components.File(label="Upload Email (.eml file)"),
|
87 |
+
gr.components.CheckboxGroup(choices=labels, label="Labels to Detect", value=labels),
|
|
|
|
|
|
|
|
|
88 |
gr.components.Checkbox(label="Use Multilingual Model")
|
89 |
],
|
90 |
outputs=[
|
|
|
95 |
gr.components.Dataframe(headers=["Text", "Label"], label="Extracted Entities"),
|
96 |
gr.components.Textbox(label="Refined Entities")
|
97 |
],
|
|
|
98 |
title="Email Info Extractor",
|
99 |
description="Upload an email file (.eml) to extract its details and detected entities."
|
100 |
)
|