jungwoonshin
commited on
Commit
•
5cd7059
1
Parent(s):
d8e6c94
asd
Browse files- app.py +74 -0
- predict/app.py +68 -0
- predict/kernel_utils.py +358 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# import argparse
|
3 |
+
# import os
|
4 |
+
# import re
|
5 |
+
# import time
|
6 |
+
|
7 |
+
# import torch
|
8 |
+
# import pandas as pd
|
9 |
+
|
10 |
+
# # import os, sys
|
11 |
+
# # root_folder = os.path.abspath(
|
12 |
+
# # os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
13 |
+
# # )
|
14 |
+
# # sys.path.append(root_folder)
|
15 |
+
# from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video_set
|
16 |
+
# from classifiers import DeepFakeClassifier
|
17 |
+
# import gradio as gr
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# def predict(video):
|
22 |
+
|
23 |
+
# # video_index = int(video_index)
|
24 |
+
|
25 |
+
# frames_per_video = 32
|
26 |
+
# video_reader = VideoReader()
|
27 |
+
# video_read_fn = lambda x: video_reader.read_frames(x, num_frames=frames_per_video)
|
28 |
+
# face_extractor = FaceExtractor(video_read_fn)
|
29 |
+
# input_size = 380
|
30 |
+
# strategy = confident_strategy
|
31 |
+
|
32 |
+
# # test_videos = sorted([x for x in os.listdir(args.test_dir) if x[-4:] == ".mp4"])[video_index]
|
33 |
+
# # print(f"Predicting {video_index} videos")
|
34 |
+
# predictions = predict_on_video_set(face_extractor=face_extractor, input_size=input_size, models=models,
|
35 |
+
# strategy=strategy, frames_per_video=frames_per_video, videos=video,
|
36 |
+
# num_workers=6, test_dir=args.test_dir)
|
37 |
+
# return predictions
|
38 |
+
|
39 |
+
# def get_args_models():
|
40 |
+
# parser = argparse.ArgumentParser("Predict test videos")
|
41 |
+
# arg = parser.add_argument
|
42 |
+
# arg('--weights-dir', type=str, default="weights", help="path to directory with checkpoints")
|
43 |
+
# arg('--models', type=str, default='classifier_DeepFakeClassifier_tf_efficientnet_b7_ns_1_best_dice', help="checkpoint files") # nargs='+',
|
44 |
+
# arg('--test-dir', type=str, default='test_dataset', help="path to directory with videos")
|
45 |
+
# arg('--output', type=str, required=False, help="path to output csv", default="submission.csv")
|
46 |
+
# args = parser.parse_args()
|
47 |
+
|
48 |
+
# models = []
|
49 |
+
# # model_paths = [os.path.join(args.weights_dir, model) for model in args.models]
|
50 |
+
# model_paths = [os.path.join(args.weights_dir, args.models)]
|
51 |
+
# for path in model_paths:
|
52 |
+
# model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns").to("cpu")
|
53 |
+
# print("loading state dict {}".format(path))
|
54 |
+
# checkpoint = torch.load(path, map_location="cpu")
|
55 |
+
# state_dict = checkpoint.get("state_dict", checkpoint)
|
56 |
+
# model.load_state_dict({re.sub("^module.", "", k): v for k, v in state_dict.items()}, strict=True)
|
57 |
+
# model.eval()
|
58 |
+
# del checkpoint
|
59 |
+
# models.append(model.half())
|
60 |
+
# return args, models
|
61 |
+
|
62 |
+
def greet(name):
|
63 |
+
return "Hello " + name + "!!"
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
# global args, models
|
67 |
+
# args, models = get_args_models()
|
68 |
+
|
69 |
+
# stime = time.time()
|
70 |
+
# print("Elapsed:", time.time() - stime)
|
71 |
+
|
72 |
+
demo = gr.Interface(fn=greet, inputs="video", outputs="text")
|
73 |
+
demo.launch()
|
74 |
+
|
predict/app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
import os, sys
|
11 |
+
root_folder = os.path.abspath(
|
12 |
+
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
13 |
+
)
|
14 |
+
sys.path.append(root_folder)
|
15 |
+
from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video_set
|
16 |
+
from training.zoo.classifiers import DeepFakeClassifier
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def predict(video):
|
21 |
+
# video_index = int(video_index)
|
22 |
+
|
23 |
+
frames_per_video = 32
|
24 |
+
video_reader = VideoReader()
|
25 |
+
video_read_fn = lambda x: video_reader.read_frames(x, num_frames=frames_per_video)
|
26 |
+
face_extractor = FaceExtractor(video_read_fn)
|
27 |
+
input_size = 380
|
28 |
+
strategy = confident_strategy
|
29 |
+
|
30 |
+
# test_videos = sorted([x for x in os.listdir(args.test_dir) if x[-4:] == ".mp4"])[video_index]
|
31 |
+
# print(f"Predicting {video_index} videos")
|
32 |
+
predictions = predict_on_video_set(face_extractor=face_extractor, input_size=input_size, models=models,
|
33 |
+
strategy=strategy, frames_per_video=frames_per_video, videos=video,
|
34 |
+
num_workers=6, test_dir=args.test_dir)
|
35 |
+
return predictions
|
36 |
+
|
37 |
+
def get_args_models():
|
38 |
+
parser = argparse.ArgumentParser("Predict test videos")
|
39 |
+
arg = parser.add_argument
|
40 |
+
arg('--weights-dir', type=str, default="weights", help="path to directory with checkpoints")
|
41 |
+
arg('--models', type=str, default='classifier_DeepFakeClassifier_tf_efficientnet_b7_ns_1_best_dice', help="checkpoint files") # nargs='+',
|
42 |
+
arg('--test-dir', type=str, default='test_dataset', help="path to directory with videos")
|
43 |
+
arg('--output', type=str, required=False, help="path to output csv", default="submission.csv")
|
44 |
+
args = parser.parse_args()
|
45 |
+
|
46 |
+
models = []
|
47 |
+
# model_paths = [os.path.join(args.weights_dir, model) for model in args.models]
|
48 |
+
model_paths = [os.path.join(args.weights_dir, args.models)]
|
49 |
+
for path in model_paths:
|
50 |
+
model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns").to("cpu")
|
51 |
+
print("loading state dict {}".format(path))
|
52 |
+
checkpoint = torch.load(path, map_location="cpu")
|
53 |
+
state_dict = checkpoint.get("state_dict", checkpoint)
|
54 |
+
model.load_state_dict({re.sub("^module.", "", k): v for k, v in state_dict.items()}, strict=True)
|
55 |
+
model.eval()
|
56 |
+
del checkpoint
|
57 |
+
models.append(model.half())
|
58 |
+
return args, models
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
global models, args
|
62 |
+
stime = time.time()
|
63 |
+
print("Elapsed:", time.time() - stime)
|
64 |
+
args, models = get_args_models()
|
65 |
+
|
66 |
+
demo = gr.Interface(fn=predict, inputs="image", outputs="text")
|
67 |
+
demo.launch()
|
68 |
+
|
predict/kernel_utils.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from albumentations.augmentations.functional import image_compression
|
8 |
+
from facenet_pytorch.models.mtcnn import MTCNN
|
9 |
+
from concurrent.futures import ThreadPoolExecutor
|
10 |
+
|
11 |
+
from torchvision.transforms import Normalize
|
12 |
+
|
13 |
+
mean = [0.485, 0.456, 0.406]
|
14 |
+
std = [0.229, 0.224, 0.225]
|
15 |
+
normalize_transform = Normalize(mean, std)
|
16 |
+
|
17 |
+
|
18 |
+
class VideoReader:
|
19 |
+
"""Helper class for reading one or more frames from a video file."""
|
20 |
+
|
21 |
+
def __init__(self, verbose=True, insets=(0, 0)):
|
22 |
+
"""Creates a new VideoReader.
|
23 |
+
|
24 |
+
Arguments:
|
25 |
+
verbose: whether to print warnings and error messages
|
26 |
+
insets: amount to inset the image by, as a percentage of
|
27 |
+
(width, height). This lets you "zoom in" to an image
|
28 |
+
to remove unimportant content around the borders.
|
29 |
+
Useful for face detection, which may not work if the
|
30 |
+
faces are too small.
|
31 |
+
"""
|
32 |
+
self.verbose = verbose
|
33 |
+
self.insets = insets
|
34 |
+
|
35 |
+
def read_frames(self, path, num_frames, jitter=0, seed=None):
|
36 |
+
"""Reads frames that are always evenly spaced throughout the video.
|
37 |
+
|
38 |
+
Arguments:
|
39 |
+
path: the video file
|
40 |
+
num_frames: how many frames to read, -1 means the entire video
|
41 |
+
(warning: this will take up a lot of memory!)
|
42 |
+
jitter: if not 0, adds small random offsets to the frame indices;
|
43 |
+
this is useful so we don't always land on even or odd frames
|
44 |
+
seed: random seed for jittering; if you set this to a fixed value,
|
45 |
+
you probably want to set it only on the first video
|
46 |
+
"""
|
47 |
+
assert num_frames > 0
|
48 |
+
|
49 |
+
capture = cv2.VideoCapture(path)
|
50 |
+
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
51 |
+
if frame_count <= 0: return None
|
52 |
+
|
53 |
+
frame_idxs = np.linspace(0, frame_count - 1, num_frames, endpoint=True, dtype=np.int)
|
54 |
+
if jitter > 0:
|
55 |
+
np.random.seed(seed)
|
56 |
+
jitter_offsets = np.random.randint(-jitter, jitter, len(frame_idxs))
|
57 |
+
frame_idxs = np.clip(frame_idxs + jitter_offsets, 0, frame_count - 1)
|
58 |
+
|
59 |
+
result = self._read_frames_at_indices(path, capture, frame_idxs)
|
60 |
+
capture.release()
|
61 |
+
return result
|
62 |
+
|
63 |
+
def read_random_frames(self, path, num_frames, seed=None):
|
64 |
+
"""Picks the frame indices at random.
|
65 |
+
|
66 |
+
Arguments:
|
67 |
+
path: the video file
|
68 |
+
num_frames: how many frames to read, -1 means the entire video
|
69 |
+
(warning: this will take up a lot of memory!)
|
70 |
+
"""
|
71 |
+
assert num_frames > 0
|
72 |
+
np.random.seed(seed)
|
73 |
+
|
74 |
+
capture = cv2.VideoCapture(path)
|
75 |
+
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
76 |
+
if frame_count <= 0: return None
|
77 |
+
|
78 |
+
frame_idxs = sorted(np.random.choice(np.arange(0, frame_count), num_frames))
|
79 |
+
result = self._read_frames_at_indices(path, capture, frame_idxs)
|
80 |
+
|
81 |
+
capture.release()
|
82 |
+
return result
|
83 |
+
|
84 |
+
def read_frames_at_indices(self, path, frame_idxs):
|
85 |
+
"""Reads frames from a video and puts them into a NumPy array.
|
86 |
+
|
87 |
+
Arguments:
|
88 |
+
path: the video file
|
89 |
+
frame_idxs: a list of frame indices. Important: should be
|
90 |
+
sorted from low-to-high! If an index appears multiple
|
91 |
+
times, the frame is still read only once.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
- a NumPy array of shape (num_frames, height, width, 3)
|
95 |
+
- a list of the frame indices that were read
|
96 |
+
|
97 |
+
Reading stops if loading a frame fails, in which case the first
|
98 |
+
dimension returned may actually be less than num_frames.
|
99 |
+
|
100 |
+
Returns None if an exception is thrown for any reason, or if no
|
101 |
+
frames were read.
|
102 |
+
"""
|
103 |
+
assert len(frame_idxs) > 0
|
104 |
+
capture = cv2.VideoCapture(path)
|
105 |
+
result = self._read_frames_at_indices(path, capture, frame_idxs)
|
106 |
+
capture.release()
|
107 |
+
return result
|
108 |
+
|
109 |
+
def _read_frames_at_indices(self, path, capture, frame_idxs):
|
110 |
+
try:
|
111 |
+
frames = []
|
112 |
+
idxs_read = []
|
113 |
+
for frame_idx in range(frame_idxs[0], frame_idxs[-1] + 1):
|
114 |
+
# Get the next frame, but don't decode if we're not using it.
|
115 |
+
ret = capture.grab()
|
116 |
+
if not ret:
|
117 |
+
if self.verbose:
|
118 |
+
print("Error grabbing frame %d from movie %s" % (frame_idx, path))
|
119 |
+
break
|
120 |
+
|
121 |
+
# Need to look at this frame?
|
122 |
+
current = len(idxs_read)
|
123 |
+
if frame_idx == frame_idxs[current]:
|
124 |
+
ret, frame = capture.retrieve()
|
125 |
+
if not ret or frame is None:
|
126 |
+
if self.verbose:
|
127 |
+
print("Error retrieving frame %d from movie %s" % (frame_idx, path))
|
128 |
+
break
|
129 |
+
|
130 |
+
frame = self._postprocess_frame(frame)
|
131 |
+
frames.append(frame)
|
132 |
+
idxs_read.append(frame_idx)
|
133 |
+
|
134 |
+
if len(frames) > 0:
|
135 |
+
return np.stack(frames), idxs_read
|
136 |
+
if self.verbose:
|
137 |
+
print("No frames read from movie %s" % path)
|
138 |
+
return None
|
139 |
+
except:
|
140 |
+
if self.verbose:
|
141 |
+
print("Exception while reading movie %s" % path)
|
142 |
+
return None
|
143 |
+
|
144 |
+
def read_middle_frame(self, path):
|
145 |
+
"""Reads the frame from the middle of the video."""
|
146 |
+
capture = cv2.VideoCapture(path)
|
147 |
+
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
148 |
+
result = self._read_frame_at_index(path, capture, frame_count // 2)
|
149 |
+
capture.release()
|
150 |
+
return result
|
151 |
+
|
152 |
+
def read_frame_at_index(self, path, frame_idx):
|
153 |
+
"""Reads a single frame from a video.
|
154 |
+
|
155 |
+
If you just want to read a single frame from the video, this is more
|
156 |
+
efficient than scanning through the video to find the frame. However,
|
157 |
+
for reading multiple frames it's not efficient.
|
158 |
+
|
159 |
+
My guess is that a "streaming" approach is more efficient than a
|
160 |
+
"random access" approach because, unless you happen to grab a keyframe,
|
161 |
+
the decoder still needs to read all the previous frames in order to
|
162 |
+
reconstruct the one you're asking for.
|
163 |
+
|
164 |
+
Returns a NumPy array of shape (1, H, W, 3) and the index of the frame,
|
165 |
+
or None if reading failed.
|
166 |
+
"""
|
167 |
+
capture = cv2.VideoCapture(path)
|
168 |
+
result = self._read_frame_at_index(path, capture, frame_idx)
|
169 |
+
capture.release()
|
170 |
+
return result
|
171 |
+
|
172 |
+
def _read_frame_at_index(self, path, capture, frame_idx):
|
173 |
+
capture.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
|
174 |
+
ret, frame = capture.read()
|
175 |
+
if not ret or frame is None:
|
176 |
+
if self.verbose:
|
177 |
+
print("Error retrieving frame %d from movie %s" % (frame_idx, path))
|
178 |
+
return None
|
179 |
+
else:
|
180 |
+
frame = self._postprocess_frame(frame)
|
181 |
+
return np.expand_dims(frame, axis=0), [frame_idx]
|
182 |
+
|
183 |
+
def _postprocess_frame(self, frame):
|
184 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
185 |
+
|
186 |
+
if self.insets[0] > 0:
|
187 |
+
W = frame.shape[1]
|
188 |
+
p = int(W * self.insets[0])
|
189 |
+
frame = frame[:, p:-p, :]
|
190 |
+
|
191 |
+
if self.insets[1] > 0:
|
192 |
+
H = frame.shape[1]
|
193 |
+
q = int(H * self.insets[1])
|
194 |
+
frame = frame[q:-q, :, :]
|
195 |
+
|
196 |
+
return frame
|
197 |
+
|
198 |
+
|
199 |
+
class FaceExtractor:
|
200 |
+
def __init__(self, video_read_fn):
|
201 |
+
self.video_read_fn = video_read_fn
|
202 |
+
self.detector = MTCNN(margin=0, thresholds=[0.7, 0.8, 0.8], device="cuda")
|
203 |
+
|
204 |
+
def process_videos(self, videos):
|
205 |
+
videos_read = []
|
206 |
+
frames_read = []
|
207 |
+
frames = []
|
208 |
+
results = []
|
209 |
+
# for video_idx in video_idxs:
|
210 |
+
# Read the full-size frames from this video.
|
211 |
+
# filename = filenames[video_idx]
|
212 |
+
# video_path = os.path.join(input_dir, filename)
|
213 |
+
# result = self.video_read_fn(video_path)
|
214 |
+
result = videos
|
215 |
+
# Error? Then skip this video.
|
216 |
+
|
217 |
+
# Keep track of the original frames (need them later).
|
218 |
+
my_frames, my_idxs = result
|
219 |
+
|
220 |
+
frames.append(my_frames)
|
221 |
+
frames_read.append(my_idxs)
|
222 |
+
for i, frame in enumerate(my_frames):
|
223 |
+
h, w = frame.shape[:2]
|
224 |
+
img = Image.fromarray(frame.astype(np.uint8))
|
225 |
+
img = img.resize(size=[s // 2 for s in img.size])
|
226 |
+
|
227 |
+
batch_boxes, probs = self.detector.detect(img, landmarks=False)
|
228 |
+
|
229 |
+
faces = []
|
230 |
+
scores = []
|
231 |
+
if batch_boxes is None:
|
232 |
+
continue
|
233 |
+
for bbox, score in zip(batch_boxes, probs):
|
234 |
+
if bbox is not None:
|
235 |
+
xmin, ymin, xmax, ymax = [int(b * 2) for b in bbox]
|
236 |
+
w = xmax - xmin
|
237 |
+
h = ymax - ymin
|
238 |
+
p_h = h // 3
|
239 |
+
p_w = w // 3
|
240 |
+
crop = frame[max(ymin - p_h, 0):ymax + p_h, max(xmin - p_w, 0):xmax + p_w]
|
241 |
+
faces.append(crop)
|
242 |
+
scores.append(score)
|
243 |
+
|
244 |
+
frame_dict = {"video_idx": video_idx,
|
245 |
+
"frame_idx": my_idxs[i],
|
246 |
+
"frame_w": w,
|
247 |
+
"frame_h": h,
|
248 |
+
"faces": faces,
|
249 |
+
"scores": scores}
|
250 |
+
results.append(frame_dict)
|
251 |
+
|
252 |
+
return results
|
253 |
+
|
254 |
+
def process_video(self, video_path):
|
255 |
+
"""Convenience method for doing face extraction on a single video."""
|
256 |
+
input_dir = os.path.dirname(video_path)
|
257 |
+
filenames = [os.path.basename(video_path)]
|
258 |
+
return self.process_videos(input_dir, filenames, [0])
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
def confident_strategy(pred, t=0.8):
|
263 |
+
pred = np.array(pred)
|
264 |
+
sz = len(pred)
|
265 |
+
fakes = np.count_nonzero(pred > t)
|
266 |
+
# 11 frames are detected as fakes with high probability
|
267 |
+
if fakes > sz // 2.5 and fakes > 11:
|
268 |
+
return np.mean(pred[pred > t])
|
269 |
+
elif np.count_nonzero(pred < 0.2) > 0.9 * sz:
|
270 |
+
return np.mean(pred[pred < 0.2])
|
271 |
+
else:
|
272 |
+
return np.mean(pred)
|
273 |
+
|
274 |
+
strategy = confident_strategy
|
275 |
+
|
276 |
+
|
277 |
+
def put_to_center(img, input_size):
|
278 |
+
img = img[:input_size, :input_size]
|
279 |
+
image = np.zeros((input_size, input_size, 3), dtype=np.uint8)
|
280 |
+
start_w = (input_size - img.shape[1]) // 2
|
281 |
+
start_h = (input_size - img.shape[0]) // 2
|
282 |
+
image[start_h:start_h + img.shape[0], start_w: start_w + img.shape[1], :] = img
|
283 |
+
return image
|
284 |
+
|
285 |
+
|
286 |
+
def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC):
|
287 |
+
h, w = img.shape[:2]
|
288 |
+
if max(w, h) == size:
|
289 |
+
return img
|
290 |
+
if w > h:
|
291 |
+
scale = size / w
|
292 |
+
h = h * scale
|
293 |
+
w = size
|
294 |
+
else:
|
295 |
+
scale = size / h
|
296 |
+
w = w * scale
|
297 |
+
h = size
|
298 |
+
interpolation = interpolation_up if scale > 1 else interpolation_down
|
299 |
+
resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation)
|
300 |
+
return resized
|
301 |
+
|
302 |
+
|
303 |
+
def predict_on_video(face_extractor, video_path, videos, batch_size, input_size, models, strategy=np.mean,
|
304 |
+
apply_compression=False):
|
305 |
+
batch_size *= 4
|
306 |
+
try:
|
307 |
+
faces = face_extractor.process_video(videos)
|
308 |
+
if len(faces) > 0:
|
309 |
+
x = np.zeros((batch_size, input_size, input_size, 3), dtype=np.uint8)
|
310 |
+
n = 0
|
311 |
+
for frame_data in faces:
|
312 |
+
for face in frame_data["faces"]:
|
313 |
+
resized_face = isotropically_resize_image(face, input_size)
|
314 |
+
resized_face = put_to_center(resized_face, input_size)
|
315 |
+
if apply_compression:
|
316 |
+
resized_face = image_compression(resized_face, quality=90, image_type=".jpg")
|
317 |
+
if n + 1 < batch_size:
|
318 |
+
x[n] = resized_face
|
319 |
+
n += 1
|
320 |
+
else:
|
321 |
+
pass
|
322 |
+
if n > 0:
|
323 |
+
x = torch.tensor(x, device="cuda").float()
|
324 |
+
# Preprocess the images.
|
325 |
+
x = x.permute((0, 3, 1, 2))
|
326 |
+
for i in range(len(x)):
|
327 |
+
x[i] = normalize_transform(x[i] / 255.)
|
328 |
+
# Make a prediction, then take the average.
|
329 |
+
with torch.no_grad():
|
330 |
+
preds = []
|
331 |
+
for model in models:
|
332 |
+
y_pred = model(x[:n].half())
|
333 |
+
y_pred = torch.sigmoid(y_pred.squeeze())
|
334 |
+
bpred = y_pred[:n].cpu().numpy()
|
335 |
+
preds.append(strategy(bpred))
|
336 |
+
return np.mean(preds)
|
337 |
+
except Exception as e:
|
338 |
+
print("Prediction error on video %s: %s" % (video_path, str(e)))
|
339 |
+
|
340 |
+
return 0.5
|
341 |
+
|
342 |
+
|
343 |
+
def predict_on_video_set(face_extractor, videos, input_size, num_workers, test_dir, frames_per_video, models,
|
344 |
+
strategy=np.mean,
|
345 |
+
apply_compression=False):
|
346 |
+
def process_file(i):
|
347 |
+
filename = videos
|
348 |
+
y_pred = predict_on_video(face_extractor=face_extractor, video_path=os.path.join(test_dir, filename),
|
349 |
+
videos=videos,
|
350 |
+
input_size=input_size,
|
351 |
+
batch_size=frames_per_video,
|
352 |
+
models=models, strategy=strategy, apply_compression=apply_compression)
|
353 |
+
return y_pred
|
354 |
+
|
355 |
+
with ThreadPoolExecutor(max_workers=num_workers) as ex:
|
356 |
+
predictions = ex.map(process_file, [1])
|
357 |
+
return list(predictions)
|
358 |
+
|