nightfury commited on
Commit
19b30ae
1 Parent(s): 52317a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -14
app.py CHANGED
@@ -172,12 +172,13 @@ def predict(input_image:Image.Image, true_label:str):
172
  }
173
  return confidences, true_label, face_with_mask
174
 
175
- title = "Deepfake Image Detection"
176
- description = "~ AI - ML implementation for fake and real image detection..."
177
- article = "<p style='text-align: center'>...</p>"
178
 
179
- #interface
180
 
 
181
  interface1 = gr.Interface(
182
  fn=predict,
183
  inputs=[
@@ -191,15 +192,16 @@ interface1 = gr.Interface(
191
  #ValueError: Invalid value for parameter `type`: auto. Please choose from one of: ['numpy', 'pil', 'filepath']
192
  ],
193
  theme = my_theme, #gr.themes.Soft(),
194
- title = title,
195
- description = description,
196
- article = article
197
  #examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
198
  )
 
199
 
200
- title1 = "AI Generated Image Detection"
201
- description1 = "~ AI - ML implementation for AI image detection using older models such as VQGAN+CLIP."
202
- article1 = """
203
  NOTE:
204
  - To detect pictures generated using older models such as VQGAN+CLIP, please use the updated version of this detector instead.
205
  - In this model i'm using a ViT model to predict whether an artistic image was generated using AI or not.
@@ -209,11 +211,11 @@ NOTE:
209
  - Images scoring as very probably artificial (e.g. 90% or higher) could be referred to a human expert for further investigation, if needed.
210
  """
211
 
212
- #interface2 = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", theme = my_theme, title=title1, description=description1, article = article1)
213
 
214
  #demo.launch(show_api=False)
215
 
216
- #'''
217
  interface2 = gr.Interface(
218
  fn=image_classifier,
219
  inputs=[
@@ -231,8 +233,8 @@ interface2 = gr.Interface(
231
  description = description1,
232
  article = article1
233
  )
234
- #'''
235
 
236
  gr.TabbedInterface(
237
  [interface1, interface2], ["Deepfake Image Detection", "AI Image Detection"]
238
- ).launch() #share=True)
 
172
  }
173
  return confidences, true_label, face_with_mask
174
 
175
+ title1 = "Deepfake Image Detection"
176
+ description1 = "~ AI - ML implementation for fake and real image detection..."
177
+ article1 = "<p style='text-align: center'>...</p>"
178
 
179
+ interface1 = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="label", theme = my_theme, title=title1, description=description1, article = article1)
180
 
181
+ '''
182
  interface1 = gr.Interface(
183
  fn=predict,
184
  inputs=[
 
192
  #ValueError: Invalid value for parameter `type`: auto. Please choose from one of: ['numpy', 'pil', 'filepath']
193
  ],
194
  theme = my_theme, #gr.themes.Soft(),
195
+ title = title1,
196
+ description = description1,
197
+ article = article1
198
  #examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
199
  )
200
+ '''
201
 
202
+ title2 = "AI Generated Image Detection"
203
+ description2 = "~ AI - ML implementation for AI image detection using older models such as VQGAN+CLIP."
204
+ article2 = """
205
  NOTE:
206
  - To detect pictures generated using older models such as VQGAN+CLIP, please use the updated version of this detector instead.
207
  - In this model i'm using a ViT model to predict whether an artistic image was generated using AI or not.
 
211
  - Images scoring as very probably artificial (e.g. 90% or higher) could be referred to a human expert for further investigation, if needed.
212
  """
213
 
214
+ interface2 = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", theme = my_theme, title=title2, description=description2, article = article2)
215
 
216
  #demo.launch(show_api=False)
217
 
218
+ '''
219
  interface2 = gr.Interface(
220
  fn=image_classifier,
221
  inputs=[
 
233
  description = description1,
234
  article = article1
235
  )
236
+ '''
237
 
238
  gr.TabbedInterface(
239
  [interface1, interface2], ["Deepfake Image Detection", "AI Image Detection"]
240
+ ).launch() #share=True)