nightfury's picture
initial commit
e0b74e6
raw
history blame
16.9 kB
from torch.functional import Tensor
import torch
import inspect
import json
import yaml
import time
import sys
from general_utils import log
import numpy as np
from os.path import expanduser, join, isfile, realpath
from torch.utils.data import DataLoader
from metrics import FixedIntervalMetrics
from general_utils import load_model, log, score_config_from_cli_args, AttributeDict, get_attribute, filter_args
DATASET_CACHE = dict()
def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False, ignore_weights=False):
config = json.load(open(join('logs', checkpoint_id, 'config.json')))
if model_args != 'from_config' and type(model_args) != dict:
raise ValueError('model_args must either be "from_config" or a dictionary of values')
model_cls = get_attribute(config['model'])
# load model
if model_args == 'from_config':
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
model = model_cls(**model_args)
if weights_file is None:
weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
else:
weights_file = realpath(join('logs', checkpoint_id, weights_file))
if isfile(weights_file) and not ignore_weights:
weights = torch.load(weights_file)
for _, w in weights.items():
assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
model.load_state_dict(weights, strict=strict)
else:
if not ignore_weights:
raise FileNotFoundError(f'model checkpoint {weights_file} was not found')
if with_config:
return model, config
return model
def compute_shift2(model, datasets, seed=123, repetitions=1):
""" computes shift """
model.eval()
model.cuda()
import random
random.seed(seed)
preds, gts = [], []
for i_dataset, dataset in enumerate(datasets):
loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)
max_iterations = int(repetitions * len(dataset.dataset.data_list))
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if v is not None else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if v is not None else v for v in data_y]
pred, = model(data_x[0], data_x[1], data_x[2])
preds += [pred.detach()]
gts += [data_y]
i += 1
if max_iterations and i >= max_iterations:
break
from metrics import FixedIntervalMetrics
n_values = 51
thresholds = np.linspace(0, 1, n_values)[1:-1]
metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, n_values=n_values)
for p, y in zip(preds, gts):
metric.add(p.unsqueeze(1), y)
best_idx = np.argmax(metric.value()['fgiou_scores'])
best_thresh = thresholds[best_idx]
return best_thresh
def get_cached_pascal_pfe(split, config):
from datasets.pfe_dataset import PFEPascalWrapper
try:
dataset = DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)]
except KeyError:
dataset = PFEPascalWrapper(mode='val', split=split, mask=config.mask, image_size=config.image_size, label_support=config.label_support)
DATASET_CACHE[(split, config.image_size, config.label_support, config.mask)] = dataset
return dataset
def main():
config, train_checkpoint_id = score_config_from_cli_args()
metrics = score(config, train_checkpoint_id, None)
for dataset in metrics.keys():
for k in metrics[dataset]:
if type(metrics[dataset][k]) in {float, int}:
print(dataset, f'{k:<16} {metrics[dataset][k]:.3f}')
def score(config, train_checkpoint_id, train_config):
config = AttributeDict(config)
print(config)
# use training dataset and loss
train_config = AttributeDict(json.load(open(f'logs/{train_checkpoint_id}/config.json')))
cp_str = f'_{config.iteration_cp}' if config.iteration_cp is not None else ''
model_cls = get_attribute(train_config['model'])
_, model_args, _ = filter_args(train_config, inspect.signature(model_cls).parameters)
model_args = {**model_args, **{k: config[k] for k in ['process_cond', 'fix_shift'] if k in config}}
strict_models = {'ConditionBase4', 'PFENetWrapper'}
model = load_model(train_checkpoint_id, strict=model_cls.__name__ in strict_models, model_args=model_args,
weights_file=f'weights{cp_str}.pth', )
model.eval()
model.cuda()
metric_args = dict()
if 'threshold' in config:
if config.metric.split('.')[-1] == 'SkLearnMetrics':
metric_args['threshold'] = config.threshold
if 'resize_to' in config:
metric_args['resize_to'] = config.resize_to
if 'sigmoid' in config:
metric_args['sigmoid'] = config.sigmoid
if 'custom_threshold' in config:
metric_args['custom_threshold'] = config.custom_threshold
if config.test_dataset == 'pascal':
loss_fn = get_attribute(train_config.loss)
# assume that if no split is specified in train_config, test on all splits,
if 'splits' in config:
splits = config.splits
else:
if 'split' in train_config and type(train_config.split) == int:
# unless train_config has a split set, in that case assume train mode in training
splits = [train_config.split]
assert train_config.mode == 'train'
else:
splits = [0,1,2,3]
log.info('Test on these splits', splits)
scores = dict()
for split in splits:
shift = config.shift if 'shift' in config else 0
# automatic shift
if shift == 'auto':
shift_compute_t = time.time()
shift = compute_shift2(model, [get_cached_pascal_pfe(s, config) for s in range(4) if s != split], repetitions=config.compute_shift_fac)
log.info(f'Best threshold is {shift}, computed on splits: {[s for s in range(4) if s != split]}, took {time.time() - shift_compute_t:.1f}s')
dataset = get_cached_pascal_pfe(split, config)
eval_start_t = time.time()
loader = DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False, drop_last=False)
assert config.batch_size is None or config.batch_size == 1, 'When PFE Dataset is used, batch size must be 1'
metric = FixedIntervalMetrics(resize_pred=True, sigmoid=True, custom_threshold=shift, **metric_args)
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
if config.mask == 'separate': # for old CondBase model
pred, = model(data_x[0], data_x[1], data_x[2])
else:
# assert config.mask in {'text', 'highlight'}
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
# loss = loss_fn(pred, data_y[0])
metric.add(pred.unsqueeze(1) + shift, data_y)
# losses += [float(loss)]
i += 1
if config.max_iterations and i >= config.max_iterations:
break
#scores[split] = {m: s for m, s in zip(metric.names(), metric.value())}
log.info(f'Dataset length: {len(dataset)}, took {time.time() - eval_start_t:.1f}s to evaluate.')
print(metric.value()['mean_iou_scores'])
scores[split] = metric.scores()
log.info(f'Completed split {split}')
key_prefix = config['name'] if 'name' in config else 'pas'
all_keys = set.intersection(*[set(v.keys()) for v in scores.values()])
valid_keys = [k for k in all_keys if all(v[k] is not None and isinstance(v[k], (int, float, np.float)) for v in scores.values())]
return {key_prefix: {k: np.mean([s[k] for s in scores.values()]) for k in valid_keys}}
if config.test_dataset == 'coco':
from datasets.coco_wrapper import COCOWrapper
coco_dataset = COCOWrapper('test', fold=train_config.fold, image_size=train_config.image_size, mask=config.mask,
with_class_label=True)
log.info('Dataset length', len(coco_dataset))
loader = DataLoader(coco_dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
metric = get_attribute(config.metric)(resize_pred=True, **metric_args)
shift = config.shift if 'shift' in config else 0
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
if config.mask == 'separate': # for old CondBase model
pred, = model(data_x[0], data_x[1], data_x[2])
else:
# assert config.mask in {'text', 'highlight'}
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
metric.add([pred + shift], data_y)
i += 1
if config.max_iterations and i >= config.max_iterations:
break
key_prefix = config['name'] if 'name' in config else 'coco'
return {key_prefix: metric.scores()}
#return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}
if config.test_dataset == 'phrasecut':
from datasets.phrasecut import PhraseCut
only_visual = config.only_visual is not None and config.only_visual
with_visual = config.with_visual is not None and config.with_visual
dataset = PhraseCut('test',
image_size=train_config.image_size,
mask=config.mask,
with_visual=with_visual, only_visual=only_visual, aug_crop=False,
aug_color=False)
loader = DataLoader(dataset, batch_size=config.batch_size, num_workers=2, shuffle=False, drop_last=False)
metric = get_attribute(config.metric)(resize_pred=True, **metric_args)
shift = config.shift if 'shift' in config else 0
with torch.no_grad():
i, losses = 0, []
for i_all, (data_x, data_y) in enumerate(loader):
data_x = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_x]
data_y = [v.cuda(non_blocking=True) if isinstance(v, torch.Tensor) else v for v in data_y]
pred, _, _, _ = model(data_x[0], data_x[1], return_features=True)
metric.add([pred + shift], data_y)
i += 1
if config.max_iterations and i >= config.max_iterations:
break
key_prefix = config['name'] if 'name' in config else 'phrasecut'
return {key_prefix: metric.scores()}
#return {key_prefix: {k: v for k, v in zip(metric.names(), metric.value())}}
if config.test_dataset == 'pascal_zs':
from third_party.JoEm.model.metric import Evaluator
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
from datasets.pascal_zeroshot import PascalZeroShot, PASCAL_VOC_CLASSES_ZS
from models.clipseg import CLIPSegMultiLabel
n_unseen = train_config.remove_classes[1]
pz = PascalZeroShot('val', n_unseen, image_size=352)
m = CLIPSegMultiLabel(model=train_config.name).cuda()
m.eval();
print(len(pz), n_unseen)
print('training removed', [c for class_set in PASCAL_VOC_CLASSES_ZS[:n_unseen // 2] for c in class_set])
print('unseen', [VOC[i] for i in get_unseen_idx(n_unseen)])
print('seen', [VOC[i] for i in get_seen_idx(n_unseen)])
loader = DataLoader(pz, batch_size=8)
evaluator = Evaluator(21, get_unseen_idx(n_unseen), get_seen_idx(n_unseen))
for i, (data_x, data_y) in enumerate(loader):
pred = m(data_x[0].cuda())
evaluator.add_batch(data_y[0].numpy(), pred.argmax(1).cpu().detach().numpy())
if config.max_iter is not None and i > config.max_iter:
break
scores = evaluator.Mean_Intersection_over_Union()
key_prefix = config['name'] if 'name' in config else 'pas_zs'
return {key_prefix: {k: scores[k] for k in ['seen', 'unseen', 'harmonic', 'overall']}}
elif config.test_dataset in {'same_as_training', 'affordance'}:
loss_fn = get_attribute(train_config.loss)
metric_cls = get_attribute(config.metric)
metric = metric_cls(**metric_args)
if config.test_dataset == 'same_as_training':
dataset_cls = get_attribute(train_config.dataset)
elif config.test_dataset == 'affordance':
dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_Affordance')
dataset_name = 'aff'
else:
dataset_cls = get_attribute('datasets.lvis_oneshot3.LVIS_OneShot')
dataset_name = 'lvis'
_, dataset_args, _ = filter_args(config, inspect.signature(dataset_cls).parameters)
dataset_args['image_size'] = train_config.image_size # explicitly use training image size for evaluation
if model.__class__.__name__ == 'PFENetWrapper':
dataset_args['image_size'] = config.image_size
log.info('init dataset', str(dataset_cls))
dataset = dataset_cls(**dataset_args)
log.info(f'Score on {model.__class__.__name__} on {dataset_cls.__name__}')
data_loader = torch.utils.data.DataLoader(dataset, batch_size=config.batch_size, shuffle=config.shuffle)
# explicitly set prompts
if config.prompt == 'plain':
model.prompt_list = ['{}']
elif config.prompt == 'fixed':
model.prompt_list = ['a photo of a {}.']
elif config.prompt == 'shuffle':
model.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
elif config.prompt == 'shuffle_clip':
from models.clip_prompts import imagenet_templates
model.prompt_list = imagenet_templates
config.assume_no_unused_keys(exceptions=['max_iterations'])
t_start = time.time()
with torch.no_grad(): # TODO: switch to inference_mode (torch 1.9)
i, losses = 0, []
for data_x, data_y in data_loader:
data_x = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_x]
data_y = [x.cuda() if isinstance(x, torch.Tensor) else x for x in data_y]
if model.__class__.__name__ in {'ConditionBase4', 'PFENetWrapper'}:
pred, = model(data_x[0], data_x[1], data_x[2])
visual_q = None
else:
pred, visual_q, _, _ = model(data_x[0], data_x[1], return_features=True)
loss = loss_fn(pred, data_y[0])
metric.add([pred], data_y)
losses += [float(loss)]
i += 1
if config.max_iterations and i >= config.max_iterations:
break
# scores = {m: s for m, s in zip(metric.names(), metric.value())}
scores = metric.scores()
keys = set(scores.keys())
if dataset.negative_prob > 0 and 'mIoU' in keys:
keys.remove('mIoU')
name_mask = dataset.mask.replace('text_label', 'txt')[:3]
name_neg = '' if dataset.negative_prob == 0 else '_' + str(dataset.negative_prob)
score_name = config.name if 'name' in config else f'{dataset_name}_{name_mask}{name_neg}'
scores = {score_name: {k: v for k,v in scores.items() if k in keys}}
scores[score_name].update({'test_loss': np.mean(losses)})
log.info(f'Evaluation took {time.time() - t_start:.1f}s')
return scores
else:
raise ValueError('invalid test dataset')
if __name__ == '__main__':
main()