Spaces:
Runtime error
Runtime error
from os.path import expanduser | |
import torch | |
import json | |
from general_utils import get_from_repository | |
from datasets.lvis_oneshot3 import blend_image_segmentation | |
from general_utils import log | |
PASCAL_CLASSES = {a['id']: a['synonyms'] for a in json.load(open('datasets/pascal_classes.json'))} | |
class PFEPascalWrapper(object): | |
def __init__(self, mode, split, mask='separate', image_size=473, label_support=None, size=None, p_negative=0, aug=None): | |
import sys | |
# sys.path.append(expanduser('~/projects/new_one_shot')) | |
from third_party.PFENet.util.dataset import SemData | |
get_from_repository('PascalVOC2012', ['Pascal5i.tar']) | |
self.p_negative = p_negative | |
self.size = size | |
self.mode = mode | |
self.image_size = image_size | |
if label_support in {True, False}: | |
log.warning('label_support argument is deprecated. Use mask instead.') | |
#raise ValueError() | |
self.mask = mask | |
value_scale = 255 | |
mean = [0.485, 0.456, 0.406] | |
mean = [item * value_scale for item in mean] | |
std = [0.229, 0.224, 0.225] | |
std = [item * value_scale for item in std] | |
import third_party.PFENet.util.transform as transform | |
if mode == 'val': | |
data_list = expanduser('~/projects/old_one_shot/PFENet/lists/pascal/val.txt') | |
data_transform = [transform.test_Resize(size=image_size)] if image_size != 'original' else [] | |
data_transform += [ | |
transform.ToTensor(), | |
transform.Normalize(mean=mean, std=std) | |
] | |
elif mode == 'train': | |
data_list = expanduser('~/projects/old_one_shot/PFENet/lists/pascal/voc_sbd_merge_noduplicate.txt') | |
assert image_size != 'original' | |
data_transform = [ | |
transform.RandScale([0.9, 1.1]), | |
transform.RandRotate([-10, 10], padding=mean, ignore_label=255), | |
transform.RandomGaussianBlur(), | |
transform.RandomHorizontalFlip(), | |
transform.Crop((image_size, image_size), crop_type='rand', padding=mean, ignore_label=255), | |
transform.ToTensor(), | |
transform.Normalize(mean=mean, std=std) | |
] | |
data_transform = transform.Compose(data_transform) | |
self.dataset = SemData(split=split, mode=mode, data_root=expanduser('~/datasets/PascalVOC2012/VOC2012'), | |
data_list=data_list, shot=1, transform=data_transform, use_coco=False, use_split_coco=False) | |
self.class_list = self.dataset.sub_val_list if mode == 'val' else self.dataset.sub_list | |
# verify that subcls_list always has length 1 | |
# assert len(set([len(d[4]) for d in self.dataset])) == 1 | |
print('actual length', len(self.dataset.data_list)) | |
def __len__(self): | |
if self.mode == 'val': | |
return len(self.dataset.data_list) | |
else: | |
return len(self.dataset.data_list) | |
def __getitem__(self, index): | |
if self.dataset.mode == 'train': | |
image, label, s_x, s_y, subcls_list = self.dataset[index % len(self.dataset.data_list)] | |
elif self.dataset.mode == 'val': | |
image, label, s_x, s_y, subcls_list, ori_label = self.dataset[index % len(self.dataset.data_list)] | |
ori_label = torch.from_numpy(ori_label).unsqueeze(0) | |
if self.image_size != 'original': | |
longerside = max(ori_label.size(1), ori_label.size(2)) | |
backmask = torch.ones(ori_label.size(0), longerside, longerside).cuda()*255 | |
backmask[0, :ori_label.size(1), :ori_label.size(2)] = ori_label | |
label = backmask.clone().long() | |
else: | |
label = label.unsqueeze(0) | |
# assert label.shape == (473, 473) | |
if self.p_negative > 0: | |
if torch.rand(1).item() < self.p_negative: | |
while True: | |
idx = torch.randint(0, len(self.dataset.data_list), (1,)).item() | |
_, _, s_x, s_y, subcls_list_tmp, _ = self.dataset[idx] | |
if subcls_list[0] != subcls_list_tmp[0]: | |
break | |
s_x = s_x[0] | |
s_y = (s_y == 1)[0] | |
label_fg = (label == 1).float() | |
val_mask = (label != 255).float() | |
class_id = self.class_list[subcls_list[0]] | |
label_name = PASCAL_CLASSES[class_id][0] | |
label_add = () | |
mask = self.mask | |
if mask == 'text': | |
support = ('a photo of a ' + label_name + '.',) | |
elif mask == 'separate': | |
support = (s_x, s_y) | |
else: | |
if mask.startswith('text_and_'): | |
label_add = (label_name,) | |
mask = mask[9:] | |
support = (blend_image_segmentation(s_x, s_y.float(), mask)[0],) | |
return (image,) + label_add + support, (label_fg.unsqueeze(0), val_mask.unsqueeze(0), subcls_list[0]) | |