Ron0420's picture
Update app.py
50dba29
raw
history blame
5.43 kB
import gradio as gr
import cv2
import numpy as np
import tensorflow as tf
import tensorflow_addons
from facenet_pytorch import MTCNN
from PIL import Image
import moviepy.editor as mp
import os
import zipfile
local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
zip_ref.close()
# Load face detector
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')
class DetectionPipeline:
"""Pipeline class for detecting faces in the frames of a video file."""
def __init__(self, detector, n_frames=None, batch_size=60, resize=None):
"""Constructor for DetectionPipeline class.
Keyword Arguments:
n_frames {int} -- Total number of frames to load. These will be evenly spaced
throughout the video. If not specified (i.e., None), all frames will be loaded.
(default: {None})
batch_size {int} -- Batch size to use with MTCNN face detector. (default: {32})
resize {float} -- Fraction by which to resize frames from original prior to face
detection. A value less than 1 results in downsampling and a value greater than
1 result in upsampling. (default: {None})
"""
self.detector = detector
self.n_frames = n_frames
self.batch_size = batch_size
self.resize = resize
def __call__(self, filename):
"""Load frames from an MP4 video and detect faces.
Arguments:
filename {str} -- Path to video.
"""
# Create video reader and find length
v_cap = cv2.VideoCapture(filename)
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Pick 'n_frames' evenly spaced frames to sample
if self.n_frames is None:
sample = np.arange(0, v_len)
else:
sample = np.linspace(0, v_len - 1, self.n_frames).astype(int)
# Loop through frames
faces = []
frames = []
for j in range(v_len):
success = v_cap.grab()
if j in sample:
# Load frame
success, frame = v_cap.retrieve()
if not success:
continue
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# frame = Image.fromarray(frame)
# Resize frame to desired size
if self.resize is not None:
frame = frame.resize([int(d * self.resize) for d in frame.size])
frames.append(frame)
# When batch is full, detect faces and reset frame list
if len(frames) % self.batch_size == 0 or j == sample[-1]:
boxes, probs = self.detector.detect(frames)
for i in range(len(frames)):
if boxes[i] is None:
faces.append(face2) #append previous face frame if no face is detected
continue
box = boxes[i][0].astype(int)
frame = frames[i]
face = frame[box[1]:box[3], box[0]:box[2]]
if not face.any():
faces.append(face2) #append previous face frame if no face is detected
continue
face2 = cv2.resize(face, (224, 224))
faces.append(face2)
frames = []
v_cap.release()
return faces
detection_pipeline = DetectionPipeline(detector=mtcnn,n_frames=20, batch_size=60)
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
def deepfakespredict(input_video):
faces = detection_pipeline(input_video)
total = 0
real = 0
fake = 0
for face in faces:
face2 = face/255
pred = model.predict(np.expand_dims(face2, axis=0))[0]
total+=1
pred2 = pred[1]
if pred2 > 0.5:
fake+=1
else:
real+=1
fake_ratio = fake/total
text =""
text2 = "Deepfakes Confidence: " + str(fake_ratio)
if fake_ratio >= 0.5:
text = "The video is FAKE."
else:
text = "The video is REAL."
face_frames = []
for face in faces:
face_frame = Image.fromarray(face.astype('uint8'), 'RGB')
face_frames.append(face_frame)
face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration = 250, loop = 100 )
clip = mp.VideoFileClip("results.gif")
clip.write_videofile("myvideo.mp4")
return text, text2, "myvideo.mp4"
title="EfficientNetV2 Deepfakes Video Detector"
description="This is a demo implementation of Deepfakes Video Detector by using EfficientNetV2 on frame-by-frame detection. To use it, simply upload your video, or click one of the examples to load them."
examples = [
['real-1.mp4'],
['fake-1.mp4'],
['Video1-fake-1-ff.mp4'],
['Video6-real-1-ff.mp4']
]
demo = gr.Interface(deepfakespredict,
inputs = ["video"],
outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
title=title,
description=description,
examples=examples
)
demo.launch()