Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from .base_color import * | |
class SIGGRAPHGenerator(BaseColor): | |
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529): | |
super(SIGGRAPHGenerator, self).__init__() | |
# Conv1 | |
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
model1+=[nn.ReLU(True),] | |
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
model1+=[nn.ReLU(True),] | |
model1+=[norm_layer(64),] | |
# add a subsampling operation | |
# Conv2 | |
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
model2+=[nn.ReLU(True),] | |
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
model2+=[nn.ReLU(True),] | |
model2+=[norm_layer(128),] | |
# add a subsampling layer operation | |
# Conv3 | |
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[norm_layer(256),] | |
# add a subsampling layer operation | |
# Conv4 | |
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[norm_layer(512),] | |
# Conv5 | |
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[norm_layer(512),] | |
# Conv6 | |
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[norm_layer(512),] | |
# Conv7 | |
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[norm_layer(512),] | |
# Conv7 | |
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)] | |
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model8=[nn.ReLU(True),] | |
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model8+=[nn.ReLU(True),] | |
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model8+=[nn.ReLU(True),] | |
model8+=[norm_layer(256),] | |
# Conv9 | |
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),] | |
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
# add the two feature maps above | |
model9=[nn.ReLU(True),] | |
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
model9+=[nn.ReLU(True),] | |
model9+=[norm_layer(128),] | |
# Conv10 | |
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),] | |
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
# add the two feature maps above | |
model10=[nn.ReLU(True),] | |
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),] | |
model10+=[nn.LeakyReLU(negative_slope=.2),] | |
# classification output | |
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] | |
# regression output | |
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),] | |
model_out+=[nn.Tanh()] | |
self.model1 = nn.Sequential(*model1) | |
self.model2 = nn.Sequential(*model2) | |
self.model3 = nn.Sequential(*model3) | |
self.model4 = nn.Sequential(*model4) | |
self.model5 = nn.Sequential(*model5) | |
self.model6 = nn.Sequential(*model6) | |
self.model7 = nn.Sequential(*model7) | |
self.model8up = nn.Sequential(*model8up) | |
self.model8 = nn.Sequential(*model8) | |
self.model9up = nn.Sequential(*model9up) | |
self.model9 = nn.Sequential(*model9) | |
self.model10up = nn.Sequential(*model10up) | |
self.model10 = nn.Sequential(*model10) | |
self.model3short8 = nn.Sequential(*model3short8) | |
self.model2short9 = nn.Sequential(*model2short9) | |
self.model1short10 = nn.Sequential(*model1short10) | |
self.model_class = nn.Sequential(*model_class) | |
self.model_out = nn.Sequential(*model_out) | |
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),]) | |
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),]) | |
def forward(self, input_A, input_B=None, mask_B=None): | |
if(input_B is None): | |
input_B = torch.cat((input_A*0, input_A*0), dim=1) | |
if(mask_B is None): | |
mask_B = input_A*0 | |
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1)) | |
conv2_2 = self.model2(conv1_2[:,:,::2,::2]) | |
conv3_3 = self.model3(conv2_2[:,:,::2,::2]) | |
conv4_3 = self.model4(conv3_3[:,:,::2,::2]) | |
conv5_3 = self.model5(conv4_3) | |
conv6_3 = self.model6(conv5_3) | |
conv7_3 = self.model7(conv6_3) | |
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3) | |
conv8_3 = self.model8(conv8_up) | |
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) | |
conv9_3 = self.model9(conv9_up) | |
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) | |
conv10_2 = self.model10(conv10_up) | |
out_reg = self.model_out(conv10_2) | |
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2) | |
conv9_3 = self.model9(conv9_up) | |
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2) | |
conv10_2 = self.model10(conv10_up) | |
out_reg = self.model_out(conv10_2) | |
return self.unnormalize_ab(out_reg) | |
def siggraph17(pretrained=True): | |
model = SIGGRAPHGenerator() | |
if(pretrained): | |
import torch.utils.model_zoo as model_zoo | |
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True)) | |
return model | |