Spaces:
Sleeping
Sleeping
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torchvision.transforms.functional as TF | |
from diffusers import ( | |
AutoencoderKL, | |
EulerAncestralDiscreteScheduler, | |
StableDiffusionXLAdapterPipeline, | |
T2IAdapter, | |
) | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + negative | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
adapter = T2IAdapter.from_pretrained( | |
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" | |
) | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( | |
model_id, | |
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), | |
adapter=adapter, | |
scheduler=scheduler, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
) | |
pipe.to(device) | |
else: | |
pipe = None | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def run( | |
image: PIL.Image.Image, | |
prompt: str, | |
negative_prompt: str, | |
style_name: str = DEFAULT_STYLE_NAME, | |
num_steps: int = 25, | |
guidance_scale: float = 5, | |
adapter_conditioning_scale: float = 0.8, | |
adapter_conditioning_factor: float = 0.8, | |
seed: int = 0, | |
progress=gr.Progress(track_tqdm=True), | |
) -> PIL.Image.Image: | |
image = image.convert("RGB") | |
image = TF.to_tensor(image) > 0.5 | |
image = TF.to_pil_image(image.to(torch.float32)) | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
num_inference_steps=num_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
adapter_conditioning_scale=adapter_conditioning_scale, | |
adapter_conditioning_factor=adapter_conditioning_factor, | |
).images[0] | |
return out | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
image = gr.Image( | |
source="canvas", | |
tool="sketch", | |
type="pil", | |
image_mode="L", | |
invert_colors=True, | |
shape=(1024, 1024), | |
brush_radius=4, | |
height=440, | |
) | |
prompt = gr.Textbox(label="Prompt") | |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
run_button = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", | |
) | |
num_steps = gr.Slider( | |
label="Number of steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
adapter_conditioning_scale = gr.Slider( | |
label="Adapter conditioning scale", | |
minimum=0.5, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
) | |
adapter_conditioning_factor = gr.Slider( | |
label="Adapter conditioning factor", | |
info="Fraction of timesteps for which adapter should be applied", | |
minimum=0.5, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Column(): | |
result = gr.Image(label="Result", height=400) | |
inputs = [ | |
image, | |
prompt, | |
negative_prompt, | |
style, | |
num_steps, | |
guidance_scale, | |
adapter_conditioning_scale, | |
adapter_conditioning_factor, | |
seed, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
negative_prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
demo.queue(max_size=20).launch() |