nigeljw commited on
Commit
1200575
1 Parent(s): f85d443

First release!

Browse files
Files changed (1) hide show
  1. app.py +10 -12
app.py CHANGED
@@ -28,15 +28,15 @@ else:
28
  pipeline = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
29
  #safety_checker=lambda images, **kwargs: (images, False))
30
 
31
- GenerateNewLatentsForInference()
32
-
33
  imageSize = (512, 512)
34
  lastImage = Image.new(mode="RGB", size=imageSize)
35
 
36
- lastSeed = 512
37
- generator = torch.Generator(device).manual_seed(512)
 
 
38
 
39
- def diffuse(staticLatents, inputImage, mask, pauseInference, prompt, negativePrompt, guidanceScale, numInferenceSteps, seed):
40
  global latents, lastSeed, generator, deviceStr, lastImage
41
 
42
  if mask is None or pauseInference is True:
@@ -45,9 +45,9 @@ def diffuse(staticLatents, inputImage, mask, pauseInference, prompt, negativePro
45
  if staticLatents is False:
46
  GenerateNewLatentsForInference()
47
 
48
- if lastSeed != seed:
49
- generator = torch.Generator(device).manual_seed(seed)
50
- lastSeed = seed
51
 
52
  newImage = pipeline(prompt=prompt,
53
  negative_prompt=negativePrompt,
@@ -71,12 +71,10 @@ mask = gradio.Image(label="Mask", type="pil", value=defaultMask)
71
  outputImage = gradio.Image(label="Extrapolated Field of View")
72
  guidanceScale = gradio.Slider(label="Guidance Scale", maximum=1, value=0.75)
73
  numInferenceSteps = gradio.Slider(label="Number of Inference Steps", maximum=100, value=25)
74
- seed = gradio.Slider(label="Generator Seed", maximum=10000, value=4096)
75
  staticLatents =gradio.Checkbox(label="Static Latents", value=True)
76
  pauseInference = gradio.Checkbox(label="Pause Inference", value=False)
77
- #generateNewLatents = gradio.Button(label="Generate New Latents")
78
- #generateNewLatents.click(GenerateNewLatentsForInference)
79
 
80
- inputs=[staticLatents, inputImage, mask, pauseInference, prompt, negativePrompt, guidanceScale, numInferenceSteps, seed]
81
  ux = gradio.Interface(fn=diffuse, title="View Diffusion", inputs=inputs, outputs=outputImage, live=True)
82
  ux.launch()
 
28
  pipeline = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
29
  #safety_checker=lambda images, **kwargs: (images, False))
30
 
 
 
31
  imageSize = (512, 512)
32
  lastImage = Image.new(mode="RGB", size=imageSize)
33
 
34
+ lastSeed = 4096
35
+ generator = torch.Generator(device).manual_seed(lastSeed)
36
+
37
+ GenerateNewLatentsForInference()
38
 
39
+ def diffuse(staticLatents, generatorSeed, inputImage, mask, pauseInference, prompt, negativePrompt, guidanceScale, numInferenceSteps):
40
  global latents, lastSeed, generator, deviceStr, lastImage
41
 
42
  if mask is None or pauseInference is True:
 
45
  if staticLatents is False:
46
  GenerateNewLatentsForInference()
47
 
48
+ if lastSeed != generatorSeed:
49
+ generator = torch.Generator(device).manual_seed(generatorSeed)
50
+ lastSeed = generatorSeed
51
 
52
  newImage = pipeline(prompt=prompt,
53
  negative_prompt=negativePrompt,
 
71
  outputImage = gradio.Image(label="Extrapolated Field of View")
72
  guidanceScale = gradio.Slider(label="Guidance Scale", maximum=1, value=0.75)
73
  numInferenceSteps = gradio.Slider(label="Number of Inference Steps", maximum=100, value=25)
74
+ generatorSeed = gradio.Slider(label="Generator Seed", maximum=10000, value=lastSeed)
75
  staticLatents =gradio.Checkbox(label="Static Latents", value=True)
76
  pauseInference = gradio.Checkbox(label="Pause Inference", value=False)
 
 
77
 
78
+ inputs=[staticLatents, generatorSeed, inputImage, mask, pauseInference, prompt, negativePrompt, guidanceScale, numInferenceSteps]
79
  ux = gradio.Interface(fn=diffuse, title="View Diffusion", inputs=inputs, outputs=outputImage, live=True)
80
  ux.launch()