vilt-vqa / app.py
nielsr's picture
nielsr HF staff
Update app.py
217b9d1
raw
history blame
1.78 kB
import gradio as gr
from transformers import ViltProcessor, ViltForVisualQuestionAnswering
import torch
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question(image, text):
encoding = processor(image, text, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
predicted_answer = model.config.id2label[idx]
return predicted_answer
image = gr.inputs.Image(type="pil")
question = gr.inputs.Textbox(label="Question")
answer = gr.outputs.Textbox(label="Predicted answer")
examples = [["cats.jpg", "How many cats are there?"],
[
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
"What is the color of the flower?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png",
"What is the mustache made of?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_2.png",
"How many slices of pizza are there?",
],
[
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_3.png",
"Does it appear to be rainy?",
],
]
interface = gr.Interface(fn=answer_question, inputs=[image, question], outputs=answer, examples=examples, enable_queue=True)
interface.launch(debug=True)