Spaces:
Running
Running
import gradio as gr | |
from transformers import ViltProcessor, ViltForVisualQuestionAnswering | |
import torch | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
model = ViltForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
def answer_question(image, text): | |
encoding = processor(image, text, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
predicted_answer = model.config.id2label[idx] | |
return predicted_answer | |
image = gr.inputs.Image(type="pil") | |
question = gr.inputs.Textbox(label="Question") | |
answer = gr.outputs.Textbox(label="Predicted answer") | |
examples = [["cats.jpg", "How many cats are there?"], | |
[ | |
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | |
"What is the color of the flower?", | |
], | |
[ | |
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png", | |
"What is the mustache made of?", | |
], | |
[ | |
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_2.png", | |
"How many slices of pizza are there?", | |
], | |
[ | |
"https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_3.png", | |
"Does it appear to be rainy?", | |
], | |
] | |
interface = gr.Interface(fn=answer_question, inputs=[image, question], outputs=answer, examples=examples, enable_queue=True) | |
interface.launch(debug=True) |