nielsr's picture
nielsr HF staff
Create app.py
202510d
raw
history blame
2.43 kB
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
import cv2
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def write_depth(depth, bits):
depth_min = depth.min()
depth_max = depth.max()
max_val = (2 ** (8 * bits)) - 1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.dtype)
cv2.imwrite("result.png", out.astype("uint16"), [cv2.IMWRITE_PNG_COMPRESSION, 0])
return
def process_image(image):
# prepare image for the model
encoding = feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
predicted_depth = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
prediction = prediction.squeeze().cpu().numpy()
# write predicted depth to file
write_depth(prediction, bits=2)
result = Image.open("result.png")
return result
title = "Interactive demo: DPT"
description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation."
examples =[['cats.jpg']]
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
#css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {height: 600px !important}"
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="predicted depth"),
title=title,
description=description,
examples=examples,
css=css,
enable_queue=True)
iface.launch(debug=True)