Spaces:
Running
Running
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
import cv2 | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def write_depth(depth, bits): | |
depth_min = depth.min() | |
depth_max = depth.max() | |
max_val = (2 ** (8 * bits)) - 1 | |
if depth_max - depth_min > np.finfo("float").eps: | |
out = max_val * (depth - depth_min) / (depth_max - depth_min) | |
else: | |
out = np.zeros(depth.shape, dtype=depth.dtype) | |
cv2.imwrite("result.png", out.astype("uint16"), [cv2.IMWRITE_PNG_COMPRESSION, 0]) | |
return | |
def process_image(image): | |
# prepare image for the model | |
encoding = feature_extractor(image, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
prediction = prediction.squeeze().cpu().numpy() | |
# write predicted depth to file | |
write_depth(prediction, bits=2) | |
result = Image.open("result.png") | |
return result | |
title = "Interactive demo: DPT" | |
description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation." | |
examples =[['cats.jpg']] | |
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" | |
#css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }" | |
# css = ".output_image, .input_image {height: 600px !important}" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="predicted depth"), | |
title=title, | |
description=description, | |
examples=examples, | |
css=css, | |
enable_queue=True) | |
iface.launch(debug=True) |