Add title, description, example image
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ import torch.nn as nn
|
|
9 |
import torchvision
|
10 |
import matplotlib.pyplot as plt
|
11 |
|
|
|
|
|
12 |
def get_attention_maps(pixel_values, attentions, nh):
|
13 |
threshold = 0.6
|
14 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
@@ -34,7 +36,6 @@ def get_attention_maps(pixel_values, attentions, nh):
|
|
34 |
output_dir = '.'
|
35 |
os.makedirs(output_dir, exist_ok=True)
|
36 |
attention_maps = []
|
37 |
-
print("Number of heads:", nh)
|
38 |
for j in range(nh):
|
39 |
fname = os.path.join(output_dir, "attn-head" + str(j) + ".png")
|
40 |
# save the attention map
|
@@ -65,7 +66,16 @@ def visualize_attention(image):
|
|
65 |
|
66 |
return attention_maps
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
iface = gr.Interface(fn=visualize_attention,
|
69 |
inputs=gr.inputs.Image(shape=(480, 480), type="pil"),
|
70 |
-
outputs=[gr.outputs.Image(type='file', label=f'attention_head_{i}') for i in range(6)]
|
|
|
|
|
|
|
|
|
71 |
iface.launch()
|
|
|
9 |
import torchvision
|
10 |
import matplotlib.pyplot as plt
|
11 |
|
12 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
13 |
+
|
14 |
def get_attention_maps(pixel_values, attentions, nh):
|
15 |
threshold = 0.6
|
16 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
|
|
36 |
output_dir = '.'
|
37 |
os.makedirs(output_dir, exist_ok=True)
|
38 |
attention_maps = []
|
|
|
39 |
for j in range(nh):
|
40 |
fname = os.path.join(output_dir, "attn-head" + str(j) + ".png")
|
41 |
# save the attention map
|
|
|
66 |
|
67 |
return attention_maps
|
68 |
|
69 |
+
title = "Interactive demo: DINO"
|
70 |
+
description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
71 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
|
72 |
+
examples =[['cats.jpg']]
|
73 |
+
|
74 |
iface = gr.Interface(fn=visualize_attention,
|
75 |
inputs=gr.inputs.Image(shape=(480, 480), type="pil"),
|
76 |
+
outputs=[gr.outputs.Image(type='file', label=f'attention_head_{i}') for i in range(6)],
|
77 |
+
title=title,
|
78 |
+
description=description,
|
79 |
+
article=article,
|
80 |
+
examples=examples)
|
81 |
iface.launch()
|