Spaces:
Running
Running
"""Lamb optimizer.""" | |
import torch | |
from torch.optim import Optimizer | |
import math | |
class Lamb(Optimizer): | |
r"""Implements Lamb algorithm. | |
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
adam (bool, optional): always use trust ratio = 1, which turns this into | |
Adam. Useful for comparison purposes. | |
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: | |
https://arxiv.org/abs/1904.00962 | |
""" | |
def __init__( | |
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, adam=False | |
): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
self.adam = adam | |
super(Lamb, self).__init__(params, defaults) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Lamb does not support sparse gradients, consider SparseAdam instad." | |
) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p.data) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
state["step"] += 1 | |
# Decay the first and second moment running average coefficient | |
# m_t | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
# v_t | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
# Paper v3 does not use debiasing. | |
bias_correction1 = 1 - beta1 ** state["step"] | |
bias_correction2 = 1 - beta2 ** state["step"] | |
exp_avg_hat = exp_avg / bias_correction1 | |
exp_avg_sq_hat = exp_avg_sq / bias_correction2 | |
# Apply bias to lr to avoid broadcast. | |
step_size = group["lr"] | |
do_layer_adaptation = ( | |
group["layer_adaptation"] | |
if "layer_adaptation" in group | |
else group["weight_decay"] > 0 | |
) | |
adam_step = exp_avg_hat / exp_avg_sq_hat.sqrt().add(group["eps"]) | |
if group["weight_decay"] != 0: | |
adam_step.add_(p.data, alpha=group["weight_decay"]) | |
if do_layer_adaptation: | |
weight_norm = p.data.norm(p=2) | |
adam_norm = adam_step.norm(p=2) | |
trust_ratio = torch.where( | |
weight_norm.ne(0), | |
torch.where(adam_norm.ne(0), weight_norm / adam_norm, 1), | |
1, | |
) | |
if self.adam or not do_layer_adaptation: | |
trust_ratio = 1 | |
p.data.add_(adam_step, alpha=-step_size * trust_ratio) | |
return loss | |