Spaces:
Running
Running
import torch | |
import random | |
import string | |
from transformers import AutoTokenizer, T5EncoderModel | |
from models.pretrained_models import Plonk | |
from models.samplers.riemannian_flow_sampler import riemannian_flow_sampler | |
from models.postprocessing import CartesiantoGPS | |
from models.schedulers import ( | |
SigmoidScheduler, | |
LinearScheduler, | |
CosineScheduler, | |
) | |
from models.preconditioning import DDPMPrecond | |
from torchvision import transforms | |
from transformers import CLIPProcessor, CLIPVisionModel | |
from utils.image_processing import CenterCrop | |
import numpy as np | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
MODELS = { | |
"nicolas-dufour/PLONK_YFCC": {"emb_name": "dinov2"}, | |
"nicolas-dufour/PLONK_OSV_5M": { | |
"emb_name": "street_clip", | |
}, | |
"nicolas-dufour/PLONK_iNaturalist": { | |
"emb_name": "dinov2", | |
}, | |
} | |
def scheduler_fn( | |
scheduler_type: str, start: float, end: float, tau: float, clip_min: float = 1e-9 | |
): | |
if scheduler_type == "sigmoid": | |
return SigmoidScheduler(start, end, tau, clip_min) | |
elif scheduler_type == "cosine": | |
return CosineScheduler(start, end, tau, clip_min) | |
elif scheduler_type == "linear": | |
return LinearScheduler(clip_min=clip_min) | |
else: | |
raise ValueError(f"Scheduler type {scheduler_type} not supported") | |
class DinoV2FeatureExtractor: | |
def __init__(self, device=device): | |
super().__init__() | |
self.device = device | |
self.emb_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14_reg") | |
self.emb_model.eval() | |
self.emb_model.to(self.device) | |
self.augmentation = transforms.Compose( | |
[ | |
CenterCrop(ratio="1:1"), | |
transforms.Resize( | |
336, interpolation=transforms.InterpolationMode.BICUBIC | |
), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) | |
), | |
] | |
) | |
def __call__(self, batch): | |
embs = [] | |
with torch.no_grad(): | |
for img in batch["img"]: | |
emb = self.emb_model( | |
self.augmentation(img).unsqueeze(0).to(self.device) | |
).squeeze(0) | |
embs.append(emb) | |
batch["emb"] = torch.stack(embs) | |
return batch | |
class StreetClipFeatureExtractor: | |
def __init__(self, device=device): | |
self.device = device | |
self.emb_model = CLIPVisionModel.from_pretrained("geolocal/StreetCLIP").to( | |
device | |
) | |
self.processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP") | |
def __call__(self, batch): | |
inputs = self.processor(images=batch["img"], return_tensors="pt") | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = self.emb_model(**inputs) | |
embeddings = outputs.last_hidden_state[:, 0] | |
batch["emb"] = embeddings | |
return batch | |
def load_prepocessing(model_name, dtype=torch.float32): | |
if MODELS[model_name]["emb_name"] == "dinov2": | |
return DinoV2FeatureExtractor() | |
elif MODELS[model_name]["emb_name"] == "street_clip": | |
return StreetClipFeatureExtractor() | |
else: | |
raise ValueError(f"Embedding model {MODELS[model_name]['emb_name']} not found") | |
class PlonkPipeline: | |
""" | |
The CADT2IPipeline class is designed to facilitate the generation of images from text prompts using a pre-trained CAD model. | |
It integrates various components such as samplers, schedulers, and post-processing techniques to produce high-quality images. | |
Initialization: | |
CADT2IPipeline( | |
model_path, | |
sampler="ddim", | |
scheduler="sigmoid", | |
postprocessing="sd_1_5_vae", | |
scheduler_start=-3, | |
scheduler_end=3, | |
scheduler_tau=1.1, | |
device="cuda", | |
) | |
Parameters: | |
model_path (str): Path to the pre-trained CAD model. | |
sampler (str): The sampling method to use. Options are "ddim", "ddpm", "dpm", "dpm_2S", "dpm_2M". Default is "ddim". | |
scheduler (str): The scheduler type to use. Options are "sigmoid", "cosine", "linear". Default is "sigmoid". | |
postprocessing (str): The post-processing method to use. Options are "consistency-decoder", "sd_1_5_vae". Default is "sd_1_5_vae". | |
scheduler_start (float): Start value for the scheduler. Default is -3. | |
scheduler_end (float): End value for the scheduler. Default is 3. | |
scheduler_tau (float): Tau value for the scheduler. Default is 1.1. | |
device (str): Device to run the model on. Default is "cuda". | |
Methods: | |
model(*args, **kwargs): | |
Runs the preconditioning on the network with the provided arguments. | |
__call__(...): | |
Generates images based on the provided conditions and parameters. | |
Parameters: | |
cond (str or list of str): The conditioning text or list of texts. | |
num_samples (int, optional): Number of samples to generate. If not provided, it is inferred from cond. | |
x_N (torch.Tensor, optional): Initial noise tensor. If not provided, it is generated. | |
latents (torch.Tensor, optional): Previous latents. | |
num_steps (int, optional): Number of steps for the sampler. If not provided, the default is used. | |
sampler (callable, optional): Custom sampler function. If not provided, the default sampler is used. | |
scheduler (callable, optional): Custom scheduler function. If not provided, the default scheduler is used. | |
cfg (float): Classifier-free guidance scale. Default is 15. | |
guidance_type (str): Type of guidance. Default is "constant". | |
guidance_start_step (int): Step to start guidance. Default is 0. | |
generator (torch.Generator, optional): Random number generator. | |
coherence_value (float): Doherence value for sampling. Default is 1.0. | |
uncoherence_value (float): Uncoherence value for sampling. Default is 0.0. | |
unconfident_prompt (str, optional): Unconfident prompt text. | |
thresholding_type (str): Type of thresholding. Default is "clamp". | |
clamp_value (float): Clamp value for thresholding. Default is 1.0. | |
thresholding_percentile (float): Percentile for thresholding. Default is 0.995. | |
Returns: | |
torch.Tensor: The generated image tensor after post-processing. | |
to(device): | |
Moves the model and its components to the specified device. | |
Parameters: | |
device (str): The device to move the model to (e.g., "cuda", "cpu"). | |
Returns: | |
CADT2IPipeline: The pipeline instance with updated device. | |
Example Usage: | |
pipe = CADT2IPipeline( | |
"nicolas-dufour/", | |
) | |
pipe.to("cuda") | |
image = pipe( | |
"a beautiful landscape with a river and mountains", | |
num_samples=4, | |
) | |
""" | |
def __init__( | |
self, | |
model_path, | |
scheduler="sigmoid", | |
scheduler_start=-7, | |
scheduler_end=3, | |
scheduler_tau=1.0, | |
device=device, | |
): | |
self.network = Plonk.from_pretrained(model_path).to(device) | |
self.network.requires_grad_(False).eval() | |
assert scheduler in [ | |
"sigmoid", | |
"cosine", | |
"linear", | |
], f"Scheduler {scheduler} not supported" | |
self.scheduler = scheduler_fn( | |
scheduler, scheduler_start, scheduler_end, scheduler_tau | |
) | |
self.cond_preprocessing = load_prepocessing(model_name=model_path) | |
self.postprocessing = CartesiantoGPS() | |
self.sampler = riemannian_flow_sampler | |
self.model_path = model_path | |
self.preconditioning = DDPMPrecond() | |
self.device = device | |
def model(self, *args, **kwargs): | |
return self.preconditioning(self.network, *args, **kwargs) | |
def __call__( | |
self, | |
images, | |
batch_size=None, | |
x_N=None, | |
num_steps=None, | |
scheduler=None, | |
cfg=0, | |
generator=None, | |
callback=None, | |
): | |
"""Sample from the model given conditioning. | |
Args: | |
cond: Conditioning input (image or list of images) | |
batch_size: Number of samples to generate (inferred from cond if not provided) | |
x_N: Initial noise tensor (generated if not provided) | |
num_steps: Number of sampling steps (uses default if not provided) | |
sampler: Custom sampler function (uses default if not provided) | |
scheduler: Custom scheduler function (uses default if not provided) | |
cfg: Classifier-free guidance scale (default 15) | |
generator: Random number generator | |
callback: Optional callback function to report progress (step, total_steps) | |
Returns: | |
Sampled GPS coordinates after postprocessing | |
""" | |
# Set up batch size and initial noise | |
shape = [3] | |
if not isinstance(images, list): | |
images = [images] | |
if x_N is None: | |
if batch_size is None: | |
if isinstance(images, list): | |
batch_size = len(images) | |
else: | |
batch_size = 1 | |
x_N = torch.randn( | |
batch_size, *shape, device=self.device, generator=generator | |
) | |
else: | |
x_N = x_N.to(self.device) | |
if x_N.ndim == 3: | |
x_N = x_N.unsqueeze(0) | |
batch_size = x_N.shape[0] | |
# Set up batch with conditioning | |
batch = {"y": x_N} | |
batch["img"] = images | |
batch = self.cond_preprocessing(batch) | |
if len(images) > 1: | |
assert len(images) == batch_size | |
else: | |
batch["emb"] = batch["emb"].repeat(batch_size, 1) | |
# Use default sampler/scheduler if not provided | |
sampler = self.sampler | |
if scheduler is None: | |
scheduler = self.scheduler | |
# Sample from model | |
if num_steps is None: | |
num_steps = 16 # Default number of steps | |
# Create a wrapper for the model that updates progress | |
def model_with_progress(*args, **kwargs): | |
step = kwargs.pop('current_step', 0) | |
if callback: | |
callback(step, num_steps) | |
return self.model(*args, **kwargs) | |
output = sampler( | |
model_with_progress, | |
batch, | |
conditioning_keys="emb", | |
scheduler=scheduler, | |
num_steps=num_steps, | |
cfg_rate=cfg, | |
generator=generator, | |
callback=callback, | |
) | |
# Apply postprocessing and return | |
output = self.postprocessing(output) | |
# To degrees | |
output = np.degrees(output.detach().cpu().numpy()) | |
return output | |
def to(self, device): | |
self.network.to(device) | |
self.postprocessing.to(device) | |
self.device = torch.device(device) | |
return self | |