Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
import math | |
from models.positional_embeddings import PositionalEmbedding, FourierEmbedding | |
from einops import rearrange | |
torch.fx.wrap("rearrange") | |
from typing import Tuple, Optional | |
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1 | |
allow_ops_in_compiled_graph() | |
class FusedMLP(nn.Sequential): | |
def __init__( | |
self, | |
dim_model: int, | |
dropout: float, | |
activation: nn.Module, | |
hidden_layer_multiplier: int = 4, | |
bias: bool = True, | |
): | |
super().__init__( | |
nn.Linear(dim_model, dim_model * hidden_layer_multiplier, bias=bias), | |
activation(), | |
nn.Dropout(dropout), | |
nn.Linear(dim_model * hidden_layer_multiplier, dim_model, bias=bias), | |
) | |
def _cast_if_autocast_enabled(tensor): | |
if torch.is_autocast_enabled(): | |
if tensor.device.type == "cuda": | |
dtype = torch.get_autocast_gpu_dtype() | |
elif tensor.device.type == "cpu": | |
dtype = torch.get_autocast_cpu_dtype() | |
else: | |
raise NotImplementedError() | |
return tensor.to(dtype=dtype) | |
return tensor | |
class LayerNorm16Bits(torch.nn.LayerNorm): | |
""" | |
16-bit friendly version of torch.nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
normalized_shape, | |
eps=1e-06, | |
elementwise_affine=True, | |
device=None, | |
dtype=None, | |
): | |
super().__init__( | |
normalized_shape=normalized_shape, | |
eps=eps, | |
elementwise_affine=elementwise_affine, | |
device=device, | |
dtype=dtype, | |
) | |
def forward(self, x): | |
module_device = x.device | |
downcast_x = _cast_if_autocast_enabled(x) | |
downcast_weight = ( | |
_cast_if_autocast_enabled(self.weight) | |
if self.weight is not None | |
else self.weight | |
) | |
downcast_bias = ( | |
_cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias | |
) | |
with torch.autocast(enabled=False, device_type=module_device.type): | |
return nn.functional.layer_norm( | |
downcast_x, | |
self.normalized_shape, | |
downcast_weight, | |
downcast_bias, | |
self.eps, | |
) | |
class StochatichDepth(nn.Module): | |
def __init__(self, p: float): | |
super().__init__() | |
self.survival_prob = 1.0 - p | |
def forward(self, x: Tensor) -> Tensor: | |
if self.training and self.survival_prob < 1: | |
mask = ( | |
torch.empty(x.shape[0], 1, 1, device=x.device).uniform_() | |
+ self.survival_prob | |
) | |
mask = mask.floor() | |
if self.survival_prob > 0: | |
mask = mask / self.survival_prob | |
return x * mask | |
else: | |
return x | |
class CrossAttentionOp(nn.Module): | |
def __init__( | |
self, attention_dim, num_heads, dim_q, dim_kv, use_biases=True, is_sa=False | |
): | |
super().__init__() | |
self.dim_q = dim_q | |
self.dim_kv = dim_kv | |
self.attention_dim = attention_dim | |
self.num_heads = num_heads | |
self.use_biases = use_biases | |
self.is_sa = is_sa | |
if self.is_sa: | |
self.qkv = nn.Linear(dim_q, attention_dim * 3, bias=use_biases) | |
else: | |
self.q = nn.Linear(dim_q, attention_dim, bias=use_biases) | |
self.kv = nn.Linear(dim_kv, attention_dim * 2, bias=use_biases) | |
self.out = nn.Linear(attention_dim, dim_q, bias=use_biases) | |
def forward(self, x_to, x_from=None, attention_mask=None, materialize_sdpa=False): | |
if x_from is None: | |
x_from = x_to | |
if self.is_sa: | |
q, k, v = self.qkv(x_to).chunk(3, dim=-1) | |
else: | |
q = self.q(x_to) | |
k, v = self.kv(x_from).chunk(2, dim=-1) | |
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads) | |
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_heads) | |
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_heads) | |
if attention_mask is not None: | |
attention_mask = attention_mask.unsqueeze(1) | |
if materialize_sdpa: | |
x = self.materialize_sdpa(q, k, v, attention_mask) | |
else: | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attention_mask | |
) | |
x = rearrange(x, "b h n d -> b n (h d)") | |
x = self.out(x) | |
return x | |
def materialize_sdpa(self, q, k, v, attn_mask=None): | |
scale = 1.0 / math.sqrt(q.shape[-1]) | |
attn_matrix = torch.einsum("b h i d, b h j d -> b h i j", q, k) * scale | |
if attn_mask is not None: | |
attn_matrix = attn_matrix * attn_mask | |
attn_matrix = torch.nn.functional.softmax(attn_matrix, dim=-1) | |
return torch.einsum("b h i j, b h j d -> b h i d", attn_matrix, v) | |
class CrossAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim_q: int, | |
dim_kv: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
retrieve_attention_scores: bool = False, | |
use_16_bits_layer_norm: bool = False, | |
): | |
super().__init__() | |
if use_16_bits_layer_norm and not retrieve_attention_scores: | |
LayerNorm = LayerNorm16Bits | |
else: | |
LayerNorm = nn.LayerNorm | |
self.retrieve_attention_scores = retrieve_attention_scores | |
self.initial_to_ln = LayerNorm(dim_q, eps=1e-6) | |
attention_dim = min(dim_q, dim_kv) if attention_dim == 0 else attention_dim | |
self.ca = CrossAttentionOp( | |
attention_dim, num_heads, dim_q, dim_kv, is_sa=False, use_biases=use_biases | |
) | |
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = LayerNorm(dim_q, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_q, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.register_parameter( | |
"attention_mask_dummy", | |
nn.Parameter(torch.ones(1, 1, dtype=torch.bool), requires_grad=False), | |
) | |
def forward( | |
self, | |
to_tokens: Tensor, | |
from_tokens: Tensor, | |
to_token_mask: Optional[Tensor] = None, | |
from_token_mask: Optional[Tensor] = None, | |
) -> Tensor: | |
if to_token_mask is None and from_token_mask is None: | |
attention_mask = None | |
else: | |
if to_token_mask is None: | |
to_token_mask = self.attention_mask_dummy.expand( | |
to_tokens.shape[0], | |
to_tokens.shape[1], | |
) | |
if from_token_mask is None: | |
from_token_mask = self.attention_mask_dummy.expand( | |
from_tokens.shape[0], | |
from_tokens.shape[1], | |
) | |
attention_mask = from_token_mask.unsqueeze(1) * to_token_mask.unsqueeze(2) | |
if self.retrieve_attention_scores: | |
attention_output = self.ca( | |
self.initial_to_ln(to_tokens), | |
from_tokens, | |
attention_mask=attention_mask, | |
materialize_sdpa=True, | |
) | |
else: | |
attention_output = self.ca( | |
self.initial_to_ln(to_tokens), | |
from_tokens, | |
attention_mask=attention_mask, | |
) | |
to_tokens = to_tokens + self.ca_stochastic_depth(attention_output) | |
to_tokens = to_tokens + self.ffn_stochastic_depth( | |
self.ffn(self.middle_ln(to_tokens)) | |
) | |
return to_tokens | |
class SelfAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim_qkv: int, | |
num_heads: int, | |
attention_dim: int = 0, | |
mlp_multiplier: int = 4, | |
dropout: float = 0.0, | |
stochastic_depth: float = 0.0, | |
use_biases: bool = True, | |
use_layer_scale: bool = False, | |
layer_scale_value: float = 0.1, | |
retrieve_attention_scores: bool = False, | |
use_16_bits_layer_norm: bool = False, | |
): | |
super().__init__() | |
if use_16_bits_layer_norm and not retrieve_attention_scores: | |
LayerNorm = LayerNorm16Bits | |
else: | |
LayerNorm = nn.LayerNorm | |
self.retrieve_attention_scores = retrieve_attention_scores | |
self.initial_ln = LayerNorm(dim_qkv, eps=1e-6) | |
attention_dim = dim_qkv if attention_dim == 0 else attention_dim | |
self.sa = CrossAttentionOp( | |
attention_dim, | |
num_heads, | |
dim_qkv, | |
dim_qkv, | |
is_sa=True, | |
use_biases=use_biases, | |
) | |
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.middle_ln = LayerNorm(dim_qkv, eps=1e-6) | |
self.ffn = FusedMLP( | |
dim_model=dim_qkv, | |
dropout=dropout, | |
activation=nn.GELU, | |
hidden_layer_multiplier=mlp_multiplier, | |
bias=use_biases, | |
) | |
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) | |
self.use_layer_scale = use_layer_scale | |
if use_layer_scale: | |
self.layer_scale_1 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.layer_scale_2 = nn.Parameter( | |
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True | |
) | |
self.register_parameter( | |
"attention_mask_dummy", | |
nn.Parameter(torch.ones(1, 1, dtype=torch.bool), requires_grad=False), | |
) | |
def forward( | |
self, | |
tokens: torch.Tensor, | |
token_mask: Optional[torch.Tensor] = None, | |
): | |
if token_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = token_mask.unsqueeze(1) * self.attention_mask_dummy.expand( | |
tokens.shape[0], | |
tokens.shape[1], | |
).unsqueeze(2) | |
if self.retrieve_attention_scores: | |
attention_output = self.sa( | |
self.initial_ln(tokens), | |
attention_mask=attention_mask, | |
materialize_sdpa=True, | |
) | |
else: | |
attention_output = self.sa( | |
self.initial_ln(tokens), | |
attention_mask=attention_mask, | |
) | |
if self.use_layer_scale: | |
tokens = tokens + self.sa_stochastic_depth( | |
self.layer_scale_1 * attention_output | |
) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.layer_scale_2 * self.ffn(self.middle_ln(tokens)) | |
) | |
else: | |
tokens = tokens + self.sa_stochastic_depth(attention_output) | |
tokens = tokens + self.ffn_stochastic_depth( | |
self.ffn(self.middle_ln(tokens)) | |
) | |
return tokens | |