nicolaleo commited on
Commit
e682a6d
·
1 Parent(s): 611d23b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -8
app.py CHANGED
@@ -1,11 +1,31 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- pipe=pipeline("sentiment-analysis")
5
- text=st.text_area("enter the text:")
6
- #x = st.slider('Select a value')
7
- #st.write(x, 'squared is', x * x)
8
-
9
- if text:
10
- out=pipe(text)
11
- st.json(out)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ #pipe=pipeline("sentiment-analysis")
5
+ #text=st.text_area("enter the text:")
6
+ ##x = st.slider('Select a value')
7
+ ##st.write(x, 'squared is', x * x)
8
+
9
+ #if text:
10
+ #out=pipe(text)
11
+ #st.json(out)
12
+
13
+ from transformers import DetrFeatureExtractor, DetrForObjectDetection
14
+ from PIL import Image
15
+ import requests
16
+
17
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
18
+ image = Image.open(requests.get(url, stream=True).raw)
19
+
20
+ feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50')
21
+ model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
22
+
23
+ inputs = feature_extractor(images=image, return_tensors="pt")
24
+ outputs = model(**inputs)
25
+
26
+ # model predicts bounding boxes and corresponding COCO classes
27
+ logits = outputs.logits
28
+ bboxes = outputs.pred_boxes
29
+
30
+ if bboxes:
31
+ st.json(bboxes)