Spaces:
Running
Running
""" | |
UNet with Depthwise Separable Convolutions for efficient lane segmentation. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class DepthwiseSeparableConv(nn.Module): | |
""" | |
Depthwise Separable Convolution Block. | |
Args: | |
in_channels (int): Number of input channels | |
out_channels (int): Number of output channels | |
""" | |
def __init__(self, in_channels: int, out_channels: int): | |
super().__init__() | |
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, groups=in_channels) | |
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.depthwise(x) | |
x = self.pointwise(x) | |
x = self.bn(x) | |
x = self.relu(x) | |
return x | |
class UNetDepthwise(nn.Module): | |
""" | |
UNet architecture using Depthwise Separable Convolutions. | |
Args: | |
in_channels (int): Number of input channels | |
out_channels (int): Number of output channels | |
""" | |
def __init__(self, in_channels: int = 3, out_channels: int = 1): | |
super().__init__() | |
self.enc1 = DepthwiseSeparableConv(in_channels, 64) | |
self.pool1 = nn.MaxPool2d(2) | |
self.enc2 = DepthwiseSeparableConv(64, 128) | |
self.pool2 = nn.MaxPool2d(2) | |
self.enc3 = DepthwiseSeparableConv(128, 256) | |
self.pool3 = nn.MaxPool2d(2) | |
self.enc4 = DepthwiseSeparableConv(256, 512) | |
self.pool4 = nn.MaxPool2d(2) | |
self.bottleneck = DepthwiseSeparableConv(512, 1024) | |
self.up4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) | |
self.dec4 = DepthwiseSeparableConv(1024, 512) | |
self.up3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) | |
self.dec3 = DepthwiseSeparableConv(512, 256) | |
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) | |
self.dec2 = DepthwiseSeparableConv(256, 128) | |
self.up1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) | |
self.dec1 = DepthwiseSeparableConv(128, 64) | |
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# Encoder | |
e1 = self.enc1(x) | |
p1 = self.pool1(e1) | |
e2 = self.enc2(p1) | |
p2 = self.pool2(e2) | |
e3 = self.enc3(p2) | |
p3 = self.pool3(e3) | |
e4 = self.enc4(p3) | |
p4 = self.pool4(e4) | |
# Bottleneck | |
b = self.bottleneck(p4) | |
# Decoder | |
u4 = self.up4(b) | |
d4 = self.dec4(torch.cat([u4, e4], dim=1)) | |
u3 = self.up3(d4) | |
d3 = self.dec3(torch.cat([u3, e3], dim=1)) | |
u2 = self.up2(d3) | |
d2 = self.dec2(torch.cat([u2, e2], dim=1)) | |
u1 = self.up1(d2) | |
d1 = self.dec1(torch.cat([u1, e1], dim=1)) | |
out = self.final_conv(d1) | |
return torch.sigmoid(out) | |
# --- Model Summary and FLOPs (Optional) --- | |
if __name__ == "__main__": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = UNetDepthwise(in_channels=3, out_channels=1).to(device) | |
dummy_input = torch.randn(1, 3, 256, 256).to(device) | |
output = model(dummy_input) | |
print(f"Output shape: {output.shape}") | |
# Model summary | |
from torchinfo import summary | |
print(summary(model, input_size=(1, 3, 256, 256), device=device)) | |
# FLOPs and parameters | |
from thop import profile | |
flops, params = profile(model, inputs=(dummy_input,)) | |
print(f"FLOPs: {flops:,}") | |
print(f"Parameters: {params:,}") |