ImageTransformationTool / transformation.py
nick-leland's picture
Updated the app to adjust the image generation
8a01cdc
raw
history blame
5.42 kB
import numpy as np
from PIL import Image
from scipy import ndimage
import matplotlib.pyplot as plt
def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1):
"""
Apply a vector field transformation to an image based on a given multivariate function.
:param image: Input image as a numpy array (height, width, channels)
:param func: A function that takes x and y as inputs and returns a scalar
:param radius: Radius of the effect as a fraction of the image size
:param center: Tuple (y, x) for the center of the effect, normalized to [0, 1]
:param strength: Strength of the effect, scaled to image size
:param edge_smoothness: Width of the smooth transition at the edge, as a fraction of the radius
:return: Tuple of (transformed image as a numpy array, gradient vectors for vector field)
"""
rows, cols = image.shape[:2]
max_dim = max(rows, cols)
# Convert normalized center to pixel coordinates
center_y = int(center[0] * rows)
center_x = int(center[1] * cols)
# Convert normalized radius to pixel radius
pixel_radius = int(max_dim * radius)
y, x = np.ogrid[:rows, :cols]
y = (y - center_y) / max_dim
x = (x - center_x) / max_dim
# Calculate distance from center
dist_from_center = np.sqrt(x**2 + y**2)
# Calculate function values
z = func(x, y)
# Calculate gradients
gy, gx = np.gradient(z)
# Create smooth transition mask
mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
# Apply mask to gradients
gx = gx * mask
gy = gy * mask
# Normalize gradient vectors
magnitude = np.sqrt(gx**2 + gy**2)
magnitude[magnitude == 0] = 1 # Avoid division by zero
gx = gx / magnitude
gy = gy / magnitude
# Scale the effect (Play with the number 5)
scale_factor = strength * np.log(max_dim) / 100 # Adjust strength based on image size
gx = gx * scale_factor * mask
gy = gy * scale_factor * mask
# Create the mapping
x_new = x + gx
y_new = y + gy
# Convert back to pixel coordinates
x_new = x_new * max_dim + center_x
y_new = y_new * max_dim + center_y
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
for i in range(image.shape[2])]
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
def transform_image(image, func_choice, radius, center_x, center_y, strength, edge_smoothness, reverse_gradient=True, spiral_frequency=1):
I = np.asarray(Image.open(image))
def pinch(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = np.sqrt(x**2 + y**2)
# return -1 / (r + 1)
return -r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
if func_choice == "Pinch":
func = pinch
elif func_choice == "Spiral":
func = shift
elif func_choice == "Bulge":
func = bulge
elif func_choice == "Shift":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
transformed, (gx, gy) = apply_vector_field_transform(I, func, radius, (center_y, center_x), strength, edge_smoothness)
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
return transformed, vector_field