Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
DistilBertTokenizerFast,
|
4 |
+
DistilBertForSequenceClassification,
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
)
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import torch
|
10 |
+
import pickle
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# Load models and tokenizers
|
14 |
+
models = {
|
15 |
+
"DistilBERT": {
|
16 |
+
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
|
17 |
+
"model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
|
18 |
+
},
|
19 |
+
"Logistic Regression": {}, # Placeholder for logistic regression
|
20 |
+
"BERT Multilingual (NLP Town)": {
|
21 |
+
"tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
22 |
+
"model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
# Load logistic regression model and vectorizer
|
27 |
+
logistic_regression_repo = "nhull/logistic-regression-model"
|
28 |
+
|
29 |
+
# Download and load logistic regression model
|
30 |
+
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
|
31 |
+
with open(log_reg_model_path, "rb") as model_file:
|
32 |
+
log_reg_model = pickle.load(model_file)
|
33 |
+
|
34 |
+
# Download and load TF-IDF vectorizer
|
35 |
+
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
|
36 |
+
with open(vectorizer_path, "rb") as vectorizer_file:
|
37 |
+
vectorizer = pickle.load(vectorizer_file)
|
38 |
+
|
39 |
+
# Move HuggingFace models to device (if GPU is available)
|
40 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
+
for model_data in models.values():
|
42 |
+
if "model" in model_data:
|
43 |
+
model_data["model"].to(device)
|
44 |
+
|
45 |
+
# Functions for prediction
|
46 |
+
def predict_with_distilbert(text):
|
47 |
+
tokenizer = models["DistilBERT"]["tokenizer"]
|
48 |
+
model = models["DistilBERT"]["model"]
|
49 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = model(**encodings)
|
52 |
+
logits = outputs.logits
|
53 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
54 |
+
return int(predictions[0] + 1)
|
55 |
+
|
56 |
+
def predict_with_logistic_regression(text):
|
57 |
+
transformed_text = vectorizer.transform([text])
|
58 |
+
predictions = log_reg_model.predict(transformed_text)
|
59 |
+
return int(predictions[0])
|
60 |
+
|
61 |
+
def predict_with_bert_multilingual(text):
|
62 |
+
tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
|
63 |
+
model = models["BERT Multilingual (NLP Town)"]["model"]
|
64 |
+
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(**encodings)
|
67 |
+
logits = outputs.logits
|
68 |
+
predictions = logits.argmax(axis=-1).cpu().numpy()
|
69 |
+
return int(predictions[0] + 1)
|
70 |
+
|
71 |
+
# Unified function for sentiment analysis and statistics
|
72 |
+
def analyze_sentiment_and_statistics(text):
|
73 |
+
results = {
|
74 |
+
"DistilBERT": predict_with_distilbert(text),
|
75 |
+
"Logistic Regression": predict_with_logistic_regression(text),
|
76 |
+
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
|
77 |
+
}
|
78 |
+
|
79 |
+
# Calculate statistics
|
80 |
+
scores = list(results.values())
|
81 |
+
min_score_model = min(results, key=results.get)
|
82 |
+
max_score_model = max(results, key=results.get)
|
83 |
+
average_score = np.mean(scores)
|
84 |
+
|
85 |
+
statistics = {
|
86 |
+
"Lowest Score": f"{results[min_score_model]} (Model: {min_score_model})",
|
87 |
+
"Highest Score": f"{results[max_score_model]} (Model: {max_score_model})",
|
88 |
+
"Average Score": f"{average_score:.2f}",
|
89 |
+
}
|
90 |
+
return results, statistics
|
91 |
+
|
92 |
+
# Gradio Interface
|
93 |
+
with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding: 20px; }") as demo:
|
94 |
+
gr.Markdown("# Sentiment Analysis App")
|
95 |
+
gr.Markdown(
|
96 |
+
"This app predicts the sentiment of the input text on a scale from 1 to 5 using multiple models and provides detailed statistics."
|
97 |
+
)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
text_input = gr.Textbox(
|
102 |
+
label="Enter your text here:",
|
103 |
+
lines=3,
|
104 |
+
placeholder="Type your hotel/restaurant review here..."
|
105 |
+
)
|
106 |
+
sample_reviews = [
|
107 |
+
"The hotel was fantastic! Clean rooms and excellent service.",
|
108 |
+
"The food was horrible, and the staff was rude.",
|
109 |
+
"Amazing experience overall. Highly recommend!",
|
110 |
+
"It was okay, not great but not terrible either.",
|
111 |
+
"Terrible! The room was dirty, and the service was non-existent."
|
112 |
+
]
|
113 |
+
sample_dropdown = gr.Dropdown(
|
114 |
+
choices=sample_reviews,
|
115 |
+
label="Or select a sample review:",
|
116 |
+
interactive=True
|
117 |
+
)
|
118 |
+
|
119 |
+
# Sync dropdown with text input
|
120 |
+
def update_textbox(selected_sample):
|
121 |
+
return selected_sample
|
122 |
+
|
123 |
+
sample_dropdown.change(
|
124 |
+
update_textbox,
|
125 |
+
inputs=[sample_dropdown],
|
126 |
+
outputs=[text_input]
|
127 |
+
)
|
128 |
+
|
129 |
+
with gr.Column():
|
130 |
+
analyze_button = gr.Button("Analyze Sentiment")
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
with gr.Column():
|
134 |
+
distilbert_output = gr.Textbox(label="Predicted Sentiment (DistilBERT)", interactive=False)
|
135 |
+
log_reg_output = gr.Textbox(label="Predicted Sentiment (Logistic Regression)", interactive=False)
|
136 |
+
bert_output = gr.Textbox(label="Predicted Sentiment (BERT Multilingual)", interactive=False)
|
137 |
+
|
138 |
+
with gr.Column():
|
139 |
+
statistics_output = gr.Textbox(label="Statistics (Lowest, Highest, Average)", interactive=False)
|
140 |
+
|
141 |
+
# Button to analyze sentiment and show statistics
|
142 |
+
def process_input_and_analyze(text_input):
|
143 |
+
results, statistics = analyze_sentiment_and_statistics(text_input)
|
144 |
+
return (
|
145 |
+
f"{results['DistilBERT']}",
|
146 |
+
f"{results['Logistic Regression']}",
|
147 |
+
f"{results['BERT Multilingual (NLP Town)']}",
|
148 |
+
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
|
149 |
+
)
|
150 |
+
|
151 |
+
analyze_button.click(
|
152 |
+
process_input_and_analyze,
|
153 |
+
inputs=[text_input],
|
154 |
+
outputs=[distilbert_output, log_reg_output, bert_output, statistics_output]
|
155 |
+
)
|
156 |
+
|
157 |
+
# Launch the app
|
158 |
+
demo.launch()
|