Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- .gitattributes +1 -0
- .github/workflows/update_space.yml +28 -0
- .ipynb_checkpoints/CGI_Classification_by_Fourier_Embeddings-checkpoint.ipynb +725 -0
- .jupyter/desktop-workspaces/default-37a8.jupyterlab-workspace +1 -0
- Archive.zip +3 -0
- CGI/.DS_Store +0 -0
- CGI/a082.jpg +0 -0
- CGI/abraao-segundo-conan-face-3k.jpg +0 -0
- CGI/adam-fisher-afisher-ahsoka-01.jpg +0 -0
- CGI/adam-fisher-afisher-asajjventres-final01.jpg +0 -0
- CGI/adam-fisher-afisher-mib-zb-02.jpg +0 -0
- CGI/adam-fisher-afisher-priestess01.jpg +0 -0
- CGI/adam-o-donnell-portrait-mainlight.jpg +0 -0
- CGI/afhnts-s-show07.jpg +0 -0
- CGI/afhnts-s-show08.jpg +0 -0
- CGI/alessandro-mastronardi-dwarfiewhite-topaz.jpg +0 -0
- CGI/alessandro-mastronardi-popup-01.jpg +0 -0
- CGI/alex-coman-slug-beach-combined.jpg +0 -0
- CGI/alex-lucas-sun-worm-002.jpg +0 -0
- CGI/alex-lucas-sun-worm-008.jpg +0 -0
- CGI/alex-pi-final-01.jpg +0 -0
- CGI/alex-pi-hangar-robots-alex-pi.jpg +0 -0
- CGI/alex-pi-ruins-ancient-civilization-final-01.jpg +0 -0
- CGI/alex-pi-temple-on-the-planet-582-73-final.jpg +0 -0
- CGI/alex-savelev-samurai-alex-saveliev-front.jpg +0 -0
- CGI/alexandre-corbini-goth-princess-03.jpg +0 -0
- CGI/andor-kollar-andorkollar-malehead1.jpg +0 -0
- CGI/andrea-bertaccini-01-lookdev-006.jpg +0 -0
- CGI/andrea-bertaccini-lorane-21-post.jpg +0 -0
- CGI/andrew-ariza-main-5.jpg +0 -0
- CGI/andrew-averkin-train-01.jpg +0 -0
- CGI/anthony-catillaz-artico-luminos-design-a-black-spider-man-looking-over-the-rainy-fd96ccx-e05f-460e-abcc-4a1462881264.jpg +0 -0
- CGI/antoine-collignon-1.jpg +0 -0
- CGI/antoine-collignon-final-piece.jpg +0 -0
- CGI/antoine-di-lorenzo-imperfectmechacell01.jpg +0 -0
- CGI/antoine-verney-carron-elephantasian03f01.jpg +0 -0
- CGI/aobo-li-light04.jpg +0 -0
- CGI/april-ed6705a8f03679c5e8012dc7d2cd02e4.jpg +0 -0
- CGI/arthur-yuan-rl-bachi-statue.jpg +0 -0
- CGI/arthur-yuan-rl-concept-environment-ukigumo-mountain-town.jpg +0 -0
- CGI/artur-tarnowski-1-girl-beauty-1920compr.jpg +0 -0
- CGI/artur-tarnowski-girl-prev-131-post-jpg.jpg +0 -0
- CGI/baj-singh-dande-rend01.jpg +0 -0
- CGI/baolong-zhang-goblin-7.jpg +0 -0
- CGI/baolong-zhang-render37b-small2.jpg +0 -0
- CGI/baolong-zhang-sirus-closeup02.jpg +0 -0
- CGI/baolong-zhang-w-113.jpg +0 -0
- CGI/ben-erdt-gren-rnd-l.jpg +0 -0
- CGI/bora-kim-1.jpg +0 -0
.DS_Store
ADDED
Binary file (14.3 kB). View file
|
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
embedding_modelv2.keras filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
.ipynb_checkpoints/CGI_Classification_by_Fourier_Embeddings-checkpoint.ipynb
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"private_outputs": true,
|
7 |
+
"provenance": [],
|
8 |
+
"machine_shape": "hm"
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"### Data Preprocessing"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "-dt9JrHpxRNH"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"import os\n",
|
32 |
+
"import cv2\n",
|
33 |
+
"import numpy as np\n",
|
34 |
+
"import matplotlib.pyplot as plt\n",
|
35 |
+
"from sklearn.manifold import TSNE\n",
|
36 |
+
"from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold\n",
|
37 |
+
"from sklearn.metrics import accuracy_score, f1_score, confusion_matrix\n",
|
38 |
+
"from sklearn.neighbors import KNeighborsClassifier\n",
|
39 |
+
"from xgboost import XGBClassifier\n",
|
40 |
+
"from sklearn.decomposition import PCA\n",
|
41 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
42 |
+
"from sklearn.decomposition import PCA\n",
|
43 |
+
"from scipy.spatial import distance\n",
|
44 |
+
"from collections import Counter\n",
|
45 |
+
"import seaborn as sns\n",
|
46 |
+
"import joblib"
|
47 |
+
],
|
48 |
+
"metadata": {
|
49 |
+
"id": "dHy-E-RQlDoj"
|
50 |
+
},
|
51 |
+
"execution_count": null,
|
52 |
+
"outputs": []
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"source": [
|
57 |
+
"# Evaluate classifiers\n",
|
58 |
+
"def evaluate_classifier(y_true, y_pred, classifier_name):\n",
|
59 |
+
" acc = accuracy_score(y_true, y_pred)\n",
|
60 |
+
" f1 = f1_score(y_true, y_pred)\n",
|
61 |
+
" cm = confusion_matrix(y_true, y_pred)\n",
|
62 |
+
" print(f\"{classifier_name} - Accuracy: {acc:.4f}, F1 Score: {f1:.4f}\")\n",
|
63 |
+
" print(f\"Confusion Matrix:\\n{cm}\\n\")\n",
|
64 |
+
"\n",
|
65 |
+
" plt.figure(figsize=(8, 6))\n",
|
66 |
+
" sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Real Photo', 'CGI'], yticklabels=['Real Photo', 'CGI'])\n",
|
67 |
+
" plt.title(f'Confusion Matrix for {classifier_name}')\n",
|
68 |
+
" plt.xlabel('Predicted Labels')\n",
|
69 |
+
" plt.ylabel('True Labels')\n",
|
70 |
+
" plt.show()"
|
71 |
+
],
|
72 |
+
"metadata": {
|
73 |
+
"id": "60Rkg6uR5oyS"
|
74 |
+
},
|
75 |
+
"execution_count": null,
|
76 |
+
"outputs": []
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"source": [
|
81 |
+
"import numpy as np\n",
|
82 |
+
"from PIL import Image\n",
|
83 |
+
"from scipy.fftpack import fft2\n",
|
84 |
+
"from tensorflow.keras.models import load_model, Model\n",
|
85 |
+
"\n",
|
86 |
+
"# Function to apply Fourier transform\n",
|
87 |
+
"def apply_fourier_transform(image):\n",
|
88 |
+
" image = np.array(image)\n",
|
89 |
+
" fft_image = fft2(image)\n",
|
90 |
+
" return np.abs(fft_image)\n",
|
91 |
+
"\n",
|
92 |
+
"# Function to preprocess image\n",
|
93 |
+
"def preprocess_image(image_path):\n",
|
94 |
+
" try:\n",
|
95 |
+
" image = Image.open(image_path).convert('L')\n",
|
96 |
+
" image = image.resize((256, 256))\n",
|
97 |
+
" image = apply_fourier_transform(image)\n",
|
98 |
+
" image = np.expand_dims(image, axis=-1) # Expand dimensions to match model input shape\n",
|
99 |
+
" image = np.expand_dims(image, axis=0) # Expand to add batch dimension\n",
|
100 |
+
" return image\n",
|
101 |
+
" except Exception as e:\n",
|
102 |
+
" print(f\"Error processing image {image_path}: {e}\")\n",
|
103 |
+
" return None\n",
|
104 |
+
"\n",
|
105 |
+
"# Function to load embedding model and calculate embeddings\n",
|
106 |
+
"def calculate_embeddings(image_path, model_path='embedding_modelv2.keras'):\n",
|
107 |
+
" # Load the trained model\n",
|
108 |
+
" model = load_model(model_path)\n",
|
109 |
+
"\n",
|
110 |
+
" # Remove the final classification layer to get embeddings\n",
|
111 |
+
" embedding_model = Model(inputs=model.input, outputs=model.output)\n",
|
112 |
+
"\n",
|
113 |
+
" # Preprocess the image\n",
|
114 |
+
" preprocessed_image = preprocess_image(image_path)\n",
|
115 |
+
"\n",
|
116 |
+
" # Calculate embeddings\n",
|
117 |
+
" embeddings = embedding_model.predict(preprocessed_image)\n",
|
118 |
+
"\n",
|
119 |
+
" return embeddings\n",
|
120 |
+
"\n",
|
121 |
+
"\n",
|
122 |
+
"def calculate_embeddings_folder(folder_path, model_path='embedding_modelv2.keras'):\n",
|
123 |
+
" embeddings = []\n",
|
124 |
+
" labels = []\n",
|
125 |
+
" for filename in os.listdir(folder_path):\n",
|
126 |
+
" if filename.endswith(\".jpg\") or filename.endswith(\".png\"):\n",
|
127 |
+
" image_path = os.path.join(folder_path, filename)\n",
|
128 |
+
" embedding = calculate_embeddings(image_path, model_path)\n",
|
129 |
+
" embeddings.append(embedding)\n",
|
130 |
+
" if \"CGI\" in folder_path:\n",
|
131 |
+
" labels.append(1)\n",
|
132 |
+
" else:\n",
|
133 |
+
" labels.append(0)\n",
|
134 |
+
" return embeddings, labels"
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"id": "oIsM1ilT5cQC"
|
138 |
+
},
|
139 |
+
"execution_count": null,
|
140 |
+
"outputs": []
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"source": [
|
145 |
+
"embeddings = np.load('embeddings.npy')\n",
|
146 |
+
"labels = np.load('labels.npy')"
|
147 |
+
],
|
148 |
+
"metadata": {
|
149 |
+
"id": "1lzKxl_gJUEg"
|
150 |
+
},
|
151 |
+
"execution_count": null,
|
152 |
+
"outputs": []
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"source": [
|
157 |
+
"X_train, X_test, y_train, y_test = train_test_split(embeddings, labels, test_size=0.2, random_state=42, stratify=labels)"
|
158 |
+
],
|
159 |
+
"metadata": {
|
160 |
+
"id": "12-KegWL3ZZh"
|
161 |
+
},
|
162 |
+
"execution_count": null,
|
163 |
+
"outputs": []
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"source": [
|
168 |
+
"X_test.shape"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "8YY8_59Lmb1N"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"source": [
|
179 |
+
"xgb_clf = XGBClassifier(use_label_encoder=False, eval_metric='logloss', early_stopping_rounds=10)\n",
|
180 |
+
"xgb_clf.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False)\n",
|
181 |
+
"y_pred_xgb = xgb_clf.predict(X_test)\n",
|
182 |
+
"evaluate_classifier(y_test, y_pred_xgb, \"XGBoost Classifier\")"
|
183 |
+
],
|
184 |
+
"metadata": {
|
185 |
+
"id": "fSosG_aU3o67"
|
186 |
+
},
|
187 |
+
"execution_count": null,
|
188 |
+
"outputs": []
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"source": [
|
193 |
+
"from sklearn.neural_network import MLPClassifier as MLP\n",
|
194 |
+
"from sklearn.svm import SVC"
|
195 |
+
],
|
196 |
+
"metadata": {
|
197 |
+
"id": "YLhckFv8JYK0"
|
198 |
+
},
|
199 |
+
"execution_count": null,
|
200 |
+
"outputs": []
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"source": [
|
205 |
+
"# Naive random classifier\n",
|
206 |
+
"class RandomClassifier:\n",
|
207 |
+
" def fit(self, X, y):\n",
|
208 |
+
" pass\n",
|
209 |
+
"\n",
|
210 |
+
" def predict(self, X):\n",
|
211 |
+
" return np.random.choice([0, 1], size=X.shape[0])\n",
|
212 |
+
"\n",
|
213 |
+
"class MeanClassifier:\n",
|
214 |
+
" def fit(self, X, y):\n",
|
215 |
+
" self.mean_0 = np.mean(X[y == 0], axis=0) if np.any(y == 0) else None\n",
|
216 |
+
" self.mean_1 = np.mean(X[y == 1], axis=0) if np.any(y == 1) else None\n",
|
217 |
+
"\n",
|
218 |
+
" def predict(self, X):\n",
|
219 |
+
" preds = []\n",
|
220 |
+
" for x in X:\n",
|
221 |
+
" dist_0 = distance.euclidean(x, self.mean_0) if self.mean_0 is not None else np.inf\n",
|
222 |
+
" dist_1 = distance.euclidean(x, self.mean_1) if self.mean_1 is not None else np.inf\n",
|
223 |
+
" preds.append(1 if dist_1 < dist_0 else 0)\n",
|
224 |
+
" return np.array(preds)\n",
|
225 |
+
"\n",
|
226 |
+
" def predict_proba(self, X):\n",
|
227 |
+
" # An implementation of probability prediction which uses a softmax function to determine the probability of each class based on the distance to the mean for each prototype\n",
|
228 |
+
" preds = []\n",
|
229 |
+
" for x in X:\n",
|
230 |
+
" dist_0 = distance.euclidean(x, self.mean_0) if self.mean_0 is not None else np\n",
|
231 |
+
" dist_1 = distance.euclidean(x, self.mean_1) if self.mean_1 is not None else np.inf\n",
|
232 |
+
" prob_0 = np.exp(-dist_0) / (np.exp(-dist_0) + np.exp(-dist_1))\n",
|
233 |
+
" prob_1 = np.exp(-dist_1) / (np.exp(-dist_0) + np.exp(-dist_1))\n",
|
234 |
+
" preds.append([prob_0, prob_1])\n",
|
235 |
+
" return np.array(preds)\n",
|
236 |
+
"\n",
|
237 |
+
" def mean_distance(self, x):\n",
|
238 |
+
" dist_mean_0 = distance.euclidean(x, self.mean_0) if self.mean_0 is not None else np.inf\n",
|
239 |
+
" dist_mean_1 = distance.euclidean(x, self.mean_1) if self.mean_1 is not None else np.inf\n",
|
240 |
+
" return dist_mean_0, dist_mean_1\n",
|
241 |
+
"\n",
|
242 |
+
"# Initialize classifiers\n",
|
243 |
+
"random_clf = RandomClassifier()\n",
|
244 |
+
"mean_clf = MeanClassifier()\n",
|
245 |
+
"knn_clf = KNeighborsClassifier(n_neighbors=10)\n",
|
246 |
+
"rf_clf = RandomForestClassifier(max_depth=10, random_state=42)\n",
|
247 |
+
"mlp_clf = MLP(hidden_layer_sizes=(128,), max_iter=1000, random_state=42)\n",
|
248 |
+
"svc_clf = SVC()\n",
|
249 |
+
"\n",
|
250 |
+
"# Train classifiers\n",
|
251 |
+
"random_clf.fit(X_train, y_train)\n",
|
252 |
+
"mean_clf.fit(X_train, y_train)\n",
|
253 |
+
"knn_clf.fit(X_train, y_train)\n",
|
254 |
+
"#xgb_clf.fit(X_train, y_train, eval_set=[(X_test, y_test)], verbose=False)\n",
|
255 |
+
"rf_clf.fit(X_train, y_train)\n",
|
256 |
+
"mlp_clf.fit(X_train, y_train)\n",
|
257 |
+
"svc_clf.fit(X_train, y_train)\n",
|
258 |
+
"\n",
|
259 |
+
"# Make predictions\n",
|
260 |
+
"y_pred_random = random_clf.predict(X_test)\n",
|
261 |
+
"y_pred_mean = mean_clf.predict(X_test)\n",
|
262 |
+
"y_pred_knn = knn_clf.predict(X_test)\n",
|
263 |
+
"#y_pred_xgb = xgb_clf.predict(X_test)\n",
|
264 |
+
"y_pred_rf = rf_clf.predict(X_test)\n",
|
265 |
+
"y_pred_mlp = mlp_clf.predict(X_test)\n",
|
266 |
+
"y_pred_svc = svc_clf.predict(X_test)"
|
267 |
+
],
|
268 |
+
"metadata": {
|
269 |
+
"id": "MXsnZFDXlNrT"
|
270 |
+
},
|
271 |
+
"execution_count": null,
|
272 |
+
"outputs": []
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"source": [
|
277 |
+
"evaluate_classifier(y_test, y_pred_random, \"Random Classifier\")\n",
|
278 |
+
"evaluate_classifier(y_test, y_pred_mean, \"Mean Classifier\")\n",
|
279 |
+
"evaluate_classifier(y_test, y_pred_knn, \"KNN Classifier\")"
|
280 |
+
],
|
281 |
+
"metadata": {
|
282 |
+
"id": "sJ52bzdJmDvn"
|
283 |
+
},
|
284 |
+
"execution_count": null,
|
285 |
+
"outputs": []
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"source": [
|
290 |
+
"evaluate_classifier(y_test, y_pred_xgb, \"XGBoost Classifier\")\n",
|
291 |
+
"evaluate_classifier(y_test, y_pred_rf, \"Random Forest Classifier\")\n",
|
292 |
+
"evaluate_classifier(y_test, y_pred_svc, \"SVC Classifier\")"
|
293 |
+
],
|
294 |
+
"metadata": {
|
295 |
+
"id": "DqyF_6STHW7o"
|
296 |
+
},
|
297 |
+
"execution_count": null,
|
298 |
+
"outputs": []
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"source": [
|
303 |
+
"evaluate_classifier(y_test, y_pred_mlp, \"MLP Classifier\")"
|
304 |
+
],
|
305 |
+
"metadata": {
|
306 |
+
"id": "QfrAONS-DLau"
|
307 |
+
},
|
308 |
+
"execution_count": null,
|
309 |
+
"outputs": []
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"source": [
|
314 |
+
"test_filename = \"neytiri.png\""
|
315 |
+
],
|
316 |
+
"metadata": {
|
317 |
+
"id": "awoV0KS8_3Bi"
|
318 |
+
},
|
319 |
+
"execution_count": null,
|
320 |
+
"outputs": []
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"source": [
|
325 |
+
"test_embeddings = calculate_embeddings(test_filename, model_path='embedding_modelv2.keras')"
|
326 |
+
],
|
327 |
+
"metadata": {
|
328 |
+
"id": "ddV4s5IUAaCc"
|
329 |
+
},
|
330 |
+
"execution_count": null,
|
331 |
+
"outputs": []
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"source": [
|
336 |
+
"def print_prob(model, image_path):\n",
|
337 |
+
" test_embeddings = calculate_embeddings(image_path, model_path='embedding_modelv2.keras')\n",
|
338 |
+
" probs = model.predict_proba(test_embeddings)\n",
|
339 |
+
" print(f\"Real Photo Probability: {probs[0][0]:.4f}\")\n",
|
340 |
+
" print(f\"CGI Probability: {probs[0][1]:.4f}\")"
|
341 |
+
],
|
342 |
+
"metadata": {
|
343 |
+
"id": "9yEk_X2rEH4K"
|
344 |
+
},
|
345 |
+
"execution_count": null,
|
346 |
+
"outputs": []
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"source": [
|
351 |
+
"print_prob(mlp_clf, test_filename)"
|
352 |
+
],
|
353 |
+
"metadata": {
|
354 |
+
"id": "yD2JCKyJROb6"
|
355 |
+
},
|
356 |
+
"execution_count": null,
|
357 |
+
"outputs": []
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"source": [
|
362 |
+
"print_prob(mean_clf, test_filename)"
|
363 |
+
],
|
364 |
+
"metadata": {
|
365 |
+
"id": "A7Nu_ABnRpT8"
|
366 |
+
},
|
367 |
+
"execution_count": null,
|
368 |
+
"outputs": []
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"cell_type": "code",
|
372 |
+
"source": [
|
373 |
+
"print_prob(xgb_clf, test_filename)"
|
374 |
+
],
|
375 |
+
"metadata": {
|
376 |
+
"id": "AFJJuPG6Rpdz"
|
377 |
+
},
|
378 |
+
"execution_count": null,
|
379 |
+
"outputs": []
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"source": [
|
384 |
+
"print_prob(rf_clf, test_filename)"
|
385 |
+
],
|
386 |
+
"metadata": {
|
387 |
+
"id": "Wil3P5JcRYNX"
|
388 |
+
},
|
389 |
+
"execution_count": null,
|
390 |
+
"outputs": []
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"cell_type": "code",
|
394 |
+
"source": [
|
395 |
+
"print_prob(knn_clf, test_filename)"
|
396 |
+
],
|
397 |
+
"metadata": {
|
398 |
+
"id": "14O37IoKZCEW"
|
399 |
+
},
|
400 |
+
"execution_count": null,
|
401 |
+
"outputs": []
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"source": [
|
406 |
+
"dist = np.round(mean_clf.mean_distance(test_embeddings[0]), 2)\n",
|
407 |
+
"print(f\"Dist to real mean {dist[0]}\")\n",
|
408 |
+
"print(f\"Dist to CGI mean {dist[1]}\")"
|
409 |
+
],
|
410 |
+
"metadata": {
|
411 |
+
"id": "gi5Vdf-bQElG"
|
412 |
+
},
|
413 |
+
"execution_count": null,
|
414 |
+
"outputs": []
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"source": [
|
419 |
+
"def embedding_distance(image_path_1, image_path_2):\n",
|
420 |
+
" embedding_1 = calculate_embeddings(image_path_1)\n",
|
421 |
+
" embedding_2 = calculate_embeddings(image_path_2)\n",
|
422 |
+
" distance = np.linalg.norm(embedding_1 - embedding_2)\n",
|
423 |
+
" return distance"
|
424 |
+
],
|
425 |
+
"metadata": {
|
426 |
+
"id": "3RkM68Li8Kh0"
|
427 |
+
},
|
428 |
+
"execution_count": null,
|
429 |
+
"outputs": []
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "markdown",
|
433 |
+
"source": [
|
434 |
+
"## Visualizing Feature Space"
|
435 |
+
],
|
436 |
+
"metadata": {
|
437 |
+
"id": "x5GprsHRwkEX"
|
438 |
+
}
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"cell_type": "code",
|
442 |
+
"source": [
|
443 |
+
"# prompt: How can I plot embeddings on a t-SNE scatter plot and colored by the label? A label of 1 should be \"CGI\" in the legend and 0 should be \"Real Photo\"\n",
|
444 |
+
"\n",
|
445 |
+
"import matplotlib.pyplot as plt\n",
|
446 |
+
"# Apply t-SNE\n",
|
447 |
+
"tsne = TSNE(n_components=2, random_state=42)\n",
|
448 |
+
"embeddings_2d = tsne.fit_transform(embeddings)\n",
|
449 |
+
"\n",
|
450 |
+
"# Plot the embeddings\n",
|
451 |
+
"plt.figure(figsize=(10, 7))\n",
|
452 |
+
"sns.scatterplot(\n",
|
453 |
+
" x=embeddings_2d[:, 0],\n",
|
454 |
+
" y=embeddings_2d[:, 1],\n",
|
455 |
+
" hue=['CGI' if label == 1 else 'Real Photo' for label in labels], # Map labels to strings\n",
|
456 |
+
" palette=sns.color_palette(\"hsv\", 2),\n",
|
457 |
+
" legend=\"full\"\n",
|
458 |
+
")\n",
|
459 |
+
"plt.title(\"t-SNE of Image Embeddings\")\n",
|
460 |
+
"plt.xlabel(\"t-SNE component 1\")\n",
|
461 |
+
"plt.ylabel(\"t-SNE component 2\")\n",
|
462 |
+
"plt.show()"
|
463 |
+
],
|
464 |
+
"metadata": {
|
465 |
+
"id": "oDx-07WfOd-2"
|
466 |
+
},
|
467 |
+
"execution_count": null,
|
468 |
+
"outputs": []
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"source": [
|
473 |
+
"# prompt: Can you write a function that visualizes the embeddings using t-sne with the labels but allows a parameter which is an image path and preprocesses the image and calculates the embeddings and plots this embedding as well?\n",
|
474 |
+
"\n",
|
475 |
+
"import matplotlib.pyplot as plt\n",
|
476 |
+
"import numpy as np\n",
|
477 |
+
"def visualize_embeddings_with_new_image(image_path, embeddings, labels):\n",
|
478 |
+
" \"\"\"\n",
|
479 |
+
" Visualizes embeddings using t-SNE, including a new image's embedding.\n",
|
480 |
+
"\n",
|
481 |
+
" Args:\n",
|
482 |
+
" image_path: Path to the new image.\n",
|
483 |
+
" embeddings: Existing embeddings.\n",
|
484 |
+
" labels: Corresponding labels for existing embeddings.\n",
|
485 |
+
" \"\"\"\n",
|
486 |
+
"\n",
|
487 |
+
" # Calculate embedding for the new image\n",
|
488 |
+
" new_embedding = calculate_embeddings(image_path, model_path='embedding_modelv2.keras')\n",
|
489 |
+
"\n",
|
490 |
+
" # Append new embedding and label to existing data\n",
|
491 |
+
" all_embeddings = np.concatenate((embeddings, new_embedding), axis=0)\n",
|
492 |
+
" all_labels = np.concatenate((labels, [2]), axis=0) # Assuming 2 is a new label for the new image\n",
|
493 |
+
"\n",
|
494 |
+
" # Apply t-SNE\n",
|
495 |
+
" tsne = TSNE(n_components=2, random_state=42)\n",
|
496 |
+
" embeddings_2d = tsne.fit_transform(all_embeddings)\n",
|
497 |
+
"\n",
|
498 |
+
" # Plot the embeddings\n",
|
499 |
+
" plt.figure(figsize=(10, 7))\n",
|
500 |
+
" sns.scatterplot(\n",
|
501 |
+
" x=embeddings_2d[:-1, 0], # Plot existing embeddings\n",
|
502 |
+
" y=embeddings_2d[:-1, 1],\n",
|
503 |
+
" hue=['CGI' if label == 1 else 'Real Photo' for label in all_labels[:-1]],\n",
|
504 |
+
" palette=sns.color_palette(\"hsv\", 2),\n",
|
505 |
+
" legend=\"full\"\n",
|
506 |
+
" )\n",
|
507 |
+
"\n",
|
508 |
+
" # Plot the new image's embedding\n",
|
509 |
+
" plt.scatter(\n",
|
510 |
+
" x=embeddings_2d[-1, 0],\n",
|
511 |
+
" y=embeddings_2d[-1, 1],\n",
|
512 |
+
" color='black',\n",
|
513 |
+
" marker='*',\n",
|
514 |
+
" s=200,\n",
|
515 |
+
" label='New Image'\n",
|
516 |
+
" )\n",
|
517 |
+
"\n",
|
518 |
+
" plt.title(\"t-SNE of Image Embeddings with New Image\")\n",
|
519 |
+
" plt.xlabel(\"t-SNE component 1\")\n",
|
520 |
+
" plt.ylabel(\"t-SNE component 2\")\n",
|
521 |
+
" plt.legend()\n",
|
522 |
+
" plt.show()\n",
|
523 |
+
"\n",
|
524 |
+
"# Example usage:\n",
|
525 |
+
"# visualize_embeddings_with_new_image(\"path/to/your/new/image.jpg\", embeddings, labels)\n"
|
526 |
+
],
|
527 |
+
"metadata": {
|
528 |
+
"id": "BKyYu-8won0l"
|
529 |
+
},
|
530 |
+
"execution_count": null,
|
531 |
+
"outputs": []
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"cell_type": "code",
|
535 |
+
"source": [
|
536 |
+
"visualize_embeddings_with_new_image(\"neytiri.png\", embeddings, labels)"
|
537 |
+
],
|
538 |
+
"metadata": {
|
539 |
+
"id": "v6jrK3Auo-eM"
|
540 |
+
},
|
541 |
+
"execution_count": null,
|
542 |
+
"outputs": []
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"cell_type": "markdown",
|
546 |
+
"source": [
|
547 |
+
"### Testing Validation"
|
548 |
+
],
|
549 |
+
"metadata": {
|
550 |
+
"id": "JokVT8QNCOCm"
|
551 |
+
}
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "code",
|
555 |
+
"source": [
|
556 |
+
"!unzip Validation.zip"
|
557 |
+
],
|
558 |
+
"metadata": {
|
559 |
+
"id": "QzkDffzBDGce"
|
560 |
+
},
|
561 |
+
"execution_count": null,
|
562 |
+
"outputs": []
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"cell_type": "code",
|
566 |
+
"source": [
|
567 |
+
"cgi_val_images, cgi_val_labels = calculate_embeddings_folder('Validation/CGI')\n",
|
568 |
+
"photo_val_images, photo_val_labels = calculate_embeddings_folder('Validation/Photo')\n",
|
569 |
+
"\n",
|
570 |
+
"print(f\"CGI shape {np.array(cgi_val_images).shape}\")\n",
|
571 |
+
"print(f\"Photo shape {np.array(photo_val_images).shape}\")"
|
572 |
+
],
|
573 |
+
"metadata": {
|
574 |
+
"id": "UkuPOZXKCNd5"
|
575 |
+
},
|
576 |
+
"execution_count": null,
|
577 |
+
"outputs": []
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"source": [
|
582 |
+
"# prompt: Can you test the validation images and labels against the XGB, Mean, and KNN classifiers?\n",
|
583 |
+
"\n",
|
584 |
+
"import numpy as np\n",
|
585 |
+
"# Combine validation data\n",
|
586 |
+
"X_val = np.concatenate((cgi_val_images, photo_val_images), axis=0)\n",
|
587 |
+
"y_val = np.concatenate((cgi_val_labels, photo_val_labels), axis=0)\n",
|
588 |
+
"\n",
|
589 |
+
"# Reshape validation data to match model input\n",
|
590 |
+
"X_val = X_val.reshape(X_val.shape[0], -1)\n",
|
591 |
+
"\n",
|
592 |
+
"# Predict using classifiers\n",
|
593 |
+
"y_pred_xgb_val = xgb_clf.predict(X_val)\n",
|
594 |
+
"y_pred_mean_val = mean_clf.predict(X_val)\n",
|
595 |
+
"y_pred_knn_val = knn_clf.predict(X_val)\n",
|
596 |
+
"y_pred_svc_val = svc_clf.predict(X_val)\n",
|
597 |
+
"y_pred_rf_val = rf_clf.predict(X_val)\n",
|
598 |
+
"y_pred_mlp_val = mlp_clf.predict(X_val)\n",
|
599 |
+
"\n",
|
600 |
+
"# Evaluate classifiers on validation set\n",
|
601 |
+
"evaluate_classifier(y_val, y_pred_xgb_val, \"XGBoost Classifier (Validation)\")\n",
|
602 |
+
"evaluate_classifier(y_val, y_pred_mean_val, \"Mean Classifier (Validation)\")\n",
|
603 |
+
"evaluate_classifier(y_val, y_pred_knn_val, \"KNN Classifier (Validation)\")\n",
|
604 |
+
"evaluate_classifier(y_val, y_pred_svc_val, \"SVC Classifier (Validation)\")\n",
|
605 |
+
"evaluate_classifier(y_val, y_pred_rf_val, \"Random Forest Classifier (Validation)\")\n"
|
606 |
+
],
|
607 |
+
"metadata": {
|
608 |
+
"id": "pUE8siFEDF0h"
|
609 |
+
},
|
610 |
+
"execution_count": null,
|
611 |
+
"outputs": []
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"cell_type": "markdown",
|
615 |
+
"source": [
|
616 |
+
"### Old Preprocessing"
|
617 |
+
],
|
618 |
+
"metadata": {
|
619 |
+
"id": "KFvqq8di5QnS"
|
620 |
+
}
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"cell_type": "code",
|
624 |
+
"source": [
|
625 |
+
"# Function to load and preprocess images\n",
|
626 |
+
"def load_images(folder, label):\n",
|
627 |
+
" images = []\n",
|
628 |
+
" labels = []\n",
|
629 |
+
" for filename in os.listdir(folder):\n",
|
630 |
+
" if filename.endswith(\".jpg\") or filename.endswith(\".png\") or filename.endswith(\".jpeg\"):\n",
|
631 |
+
" img = cv2.imread(os.path.join(folder, filename), cv2.IMREAD_GRAYSCALE)\n",
|
632 |
+
" if img is not None:\n",
|
633 |
+
" img = cv2.resize(img, (256, 256))\n",
|
634 |
+
" images.append(img)\n",
|
635 |
+
" labels.append(label)\n",
|
636 |
+
" return images, labels\n",
|
637 |
+
"\n",
|
638 |
+
"pca = PCA(n_components=128)\n",
|
639 |
+
"# Function to perform Fourier transform and extract features\n",
|
640 |
+
"def extract_features(images):\n",
|
641 |
+
" features = []\n",
|
642 |
+
" for img in images:\n",
|
643 |
+
" f_transform = np.fft.fft2(img)\n",
|
644 |
+
" f_shift = np.fft.fftshift(f_transform)\n",
|
645 |
+
" magnitude_spectrum = 20 * np.log(np.abs(f_shift))\n",
|
646 |
+
" features.append(magnitude_spectrum.flatten())\n",
|
647 |
+
" features = pca.fit_transform(features)\n",
|
648 |
+
" return np.array(features)\n",
|
649 |
+
"\n",
|
650 |
+
"# Load and preprocess images from both folders\n",
|
651 |
+
"cgi_images, cgi_labels = load_images('CGI', 1) # 1 for CGI\n",
|
652 |
+
"photo_images, photo_labels = load_images('Photo', 0) # 0 for Real Photo\n",
|
653 |
+
"\n",
|
654 |
+
"min_length = min(len(cgi_images), len(photo_images))\n",
|
655 |
+
"cgi_images = cgi_images[:min_length]\n",
|
656 |
+
"cgi_labels = cgi_labels[:min_length]\n",
|
657 |
+
"photo_images = photo_images[:min_length]\n",
|
658 |
+
"photo_labels = photo_labels[:min_length]\n",
|
659 |
+
"\n",
|
660 |
+
"# Combine datasets\n",
|
661 |
+
"images = cgi_images + photo_images\n",
|
662 |
+
"labels = cgi_labels + photo_labels\n",
|
663 |
+
"\n",
|
664 |
+
"print(f\"Number of CGI images: {len(cgi_images)}\")\n",
|
665 |
+
"print(f\"Number of Photo images: {len(photo_images)}\")\n",
|
666 |
+
"\n",
|
667 |
+
"# Extract features\n",
|
668 |
+
"features = extract_features(images)\n",
|
669 |
+
"\n",
|
670 |
+
"# Encode labels\n",
|
671 |
+
"labels = np.array(labels)\n",
|
672 |
+
"\n",
|
673 |
+
"# Split data into training and testing sets\n",
|
674 |
+
"X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42, stratify=labels)"
|
675 |
+
],
|
676 |
+
"metadata": {
|
677 |
+
"id": "5-M_iFWC5SOk"
|
678 |
+
},
|
679 |
+
"execution_count": null,
|
680 |
+
"outputs": []
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"cell_type": "code",
|
684 |
+
"source": [
|
685 |
+
"X_train.shape"
|
686 |
+
],
|
687 |
+
"metadata": {
|
688 |
+
"id": "yAqmOxpp-iin"
|
689 |
+
},
|
690 |
+
"execution_count": null,
|
691 |
+
"outputs": []
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"cell_type": "code",
|
695 |
+
"source": [
|
696 |
+
"embeddings.shape"
|
697 |
+
],
|
698 |
+
"metadata": {
|
699 |
+
"id": "Dm1lretJBbKs"
|
700 |
+
},
|
701 |
+
"execution_count": null,
|
702 |
+
"outputs": []
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"source": [
|
707 |
+
"X_test.shape"
|
708 |
+
],
|
709 |
+
"metadata": {
|
710 |
+
"id": "TlumN_GMBg_F"
|
711 |
+
},
|
712 |
+
"execution_count": null,
|
713 |
+
"outputs": []
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"cell_type": "code",
|
717 |
+
"source": [],
|
718 |
+
"metadata": {
|
719 |
+
"id": "8Fq0dUzHtHeQ"
|
720 |
+
},
|
721 |
+
"execution_count": null,
|
722 |
+
"outputs": []
|
723 |
+
}
|
724 |
+
]
|
725 |
+
}
|
.jupyter/desktop-workspaces/default-37a8.jupyterlab-workspace
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"data":{"layout-restorer:data":{"main":{"dock":{"type":"tab-area","currentIndex":1,"widgets":["notebook:CGI_Classification_by_Fourier_Embeddings.ipynb"]},"current":"notebook:CGI_Classification_by_Fourier_Embeddings.ipynb"},"down":{"size":0,"widgets":[]},"left":{"collapsed":false,"current":"filebrowser","widgets":["filebrowser","running-sessions","@jupyterlab/toc:plugin","extensionmanager.main-view"]},"right":{"collapsed":true,"widgets":["jp-property-inspector","debugger-sidebar"]},"relativeSizes":[0.26227795193312436,0.7377220480668757,0]},"notebook:CGI_Classification_by_Fourier_Embeddings.ipynb":{"data":{"path":"CGI_Classification_by_Fourier_Embeddings.ipynb","factory":"Notebook"}}},"metadata":{"id":"default"}}
|
Archive.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5512bf6c7c0eca199e61a46b5727a5b65478b09262ad3e46d854df67f57e1e42
|
3 |
+
size 9556331
|
CGI/.DS_Store
ADDED
Binary file (47.1 kB). View file
|
|
CGI/a082.jpg
ADDED
![]() |
CGI/abraao-segundo-conan-face-3k.jpg
ADDED
![]() |
CGI/adam-fisher-afisher-ahsoka-01.jpg
ADDED
![]() |
CGI/adam-fisher-afisher-asajjventres-final01.jpg
ADDED
![]() |
CGI/adam-fisher-afisher-mib-zb-02.jpg
ADDED
![]() |
CGI/adam-fisher-afisher-priestess01.jpg
ADDED
![]() |
CGI/adam-o-donnell-portrait-mainlight.jpg
ADDED
![]() |
CGI/afhnts-s-show07.jpg
ADDED
![]() |
CGI/afhnts-s-show08.jpg
ADDED
![]() |
CGI/alessandro-mastronardi-dwarfiewhite-topaz.jpg
ADDED
![]() |
CGI/alessandro-mastronardi-popup-01.jpg
ADDED
![]() |
CGI/alex-coman-slug-beach-combined.jpg
ADDED
![]() |
CGI/alex-lucas-sun-worm-002.jpg
ADDED
![]() |
CGI/alex-lucas-sun-worm-008.jpg
ADDED
![]() |
CGI/alex-pi-final-01.jpg
ADDED
![]() |
CGI/alex-pi-hangar-robots-alex-pi.jpg
ADDED
![]() |
CGI/alex-pi-ruins-ancient-civilization-final-01.jpg
ADDED
![]() |
CGI/alex-pi-temple-on-the-planet-582-73-final.jpg
ADDED
![]() |
CGI/alex-savelev-samurai-alex-saveliev-front.jpg
ADDED
![]() |
CGI/alexandre-corbini-goth-princess-03.jpg
ADDED
![]() |
CGI/andor-kollar-andorkollar-malehead1.jpg
ADDED
![]() |
CGI/andrea-bertaccini-01-lookdev-006.jpg
ADDED
![]() |
CGI/andrea-bertaccini-lorane-21-post.jpg
ADDED
![]() |
CGI/andrew-ariza-main-5.jpg
ADDED
![]() |
CGI/andrew-averkin-train-01.jpg
ADDED
![]() |
CGI/anthony-catillaz-artico-luminos-design-a-black-spider-man-looking-over-the-rainy-fd96ccx-e05f-460e-abcc-4a1462881264.jpg
ADDED
![]() |
CGI/antoine-collignon-1.jpg
ADDED
![]() |
CGI/antoine-collignon-final-piece.jpg
ADDED
![]() |
CGI/antoine-di-lorenzo-imperfectmechacell01.jpg
ADDED
![]() |
CGI/antoine-verney-carron-elephantasian03f01.jpg
ADDED
![]() |
CGI/aobo-li-light04.jpg
ADDED
![]() |
CGI/april-ed6705a8f03679c5e8012dc7d2cd02e4.jpg
ADDED
![]() |
CGI/arthur-yuan-rl-bachi-statue.jpg
ADDED
![]() |
CGI/arthur-yuan-rl-concept-environment-ukigumo-mountain-town.jpg
ADDED
![]() |
CGI/artur-tarnowski-1-girl-beauty-1920compr.jpg
ADDED
![]() |
CGI/artur-tarnowski-girl-prev-131-post-jpg.jpg
ADDED
![]() |
CGI/baj-singh-dande-rend01.jpg
ADDED
![]() |
CGI/baolong-zhang-goblin-7.jpg
ADDED
![]() |
CGI/baolong-zhang-render37b-small2.jpg
ADDED
![]() |
CGI/baolong-zhang-sirus-closeup02.jpg
ADDED
![]() |
CGI/baolong-zhang-w-113.jpg
ADDED
![]() |
CGI/ben-erdt-gren-rnd-l.jpg
ADDED
![]() |
CGI/bora-kim-1.jpg
ADDED
![]() |