Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- cgi_classification_app.py +4 -56
cgi_classification_app.py
CHANGED
|
@@ -6,57 +6,6 @@ Automatically generated by Colab.
|
|
| 6 |
Original file is located at
|
| 7 |
https://colab.research.google.com/drive/1ckzOtXUiFW_NqlIandwoH07lnsLGKTLB
|
| 8 |
"""
|
| 9 |
-
from scipy.spatial import distance
|
| 10 |
-
import numpy as np
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class MeanClassifier:
|
| 14 |
-
def fit(self, X, y):
|
| 15 |
-
self.mean_0 = np.mean(X[y == 0], axis=0) if np.any(y == 0) else None
|
| 16 |
-
self.mean_1 = np.mean(X[y == 1], axis=0) if np.any(y == 1) else None
|
| 17 |
-
|
| 18 |
-
def predict(self, X):
|
| 19 |
-
preds = []
|
| 20 |
-
for x in X:
|
| 21 |
-
dist_0 = (
|
| 22 |
-
distance.euclidean(x, self.mean_0)
|
| 23 |
-
if self.mean_0 is not None
|
| 24 |
-
else np.inf
|
| 25 |
-
)
|
| 26 |
-
dist_1 = (
|
| 27 |
-
distance.euclidean(x, self.mean_1)
|
| 28 |
-
if self.mean_1 is not None
|
| 29 |
-
else np.inf
|
| 30 |
-
)
|
| 31 |
-
preds.append(1 if dist_1 < dist_0 else 0)
|
| 32 |
-
return np.array(preds)
|
| 33 |
-
|
| 34 |
-
def predict_proba(self, X):
|
| 35 |
-
# An implementation of probability prediction which uses a softmax function to determine the probability of each class based on the distance to the mean for each prototype
|
| 36 |
-
preds = []
|
| 37 |
-
for x in X:
|
| 38 |
-
dist_0 = (
|
| 39 |
-
distance.euclidean(x, self.mean_0) if self.mean_0 is not None else np
|
| 40 |
-
)
|
| 41 |
-
dist_1 = (
|
| 42 |
-
distance.euclidean(x, self.mean_1)
|
| 43 |
-
if self.mean_1 is not None
|
| 44 |
-
else np.inf
|
| 45 |
-
)
|
| 46 |
-
prob_0 = np.exp(-dist_0) / (np.exp(-dist_0) + np.exp(-dist_1))
|
| 47 |
-
prob_1 = np.exp(-dist_1) / (np.exp(-dist_0) + np.exp(-dist_1))
|
| 48 |
-
preds.append([prob_0, prob_1])
|
| 49 |
-
return np.array(preds)
|
| 50 |
-
|
| 51 |
-
def mean_distance(self, x):
|
| 52 |
-
dist_mean_0 = (
|
| 53 |
-
distance.euclidean(x, self.mean_0) if self.mean_0 is not None else np.inf
|
| 54 |
-
)
|
| 55 |
-
dist_mean_1 = (
|
| 56 |
-
distance.euclidean(x, self.mean_1) if self.mean_1 is not None else np.inf
|
| 57 |
-
)
|
| 58 |
-
return dist_mean_0, dist_mean_1
|
| 59 |
-
|
| 60 |
|
| 61 |
import gradio as gr
|
| 62 |
from PIL import Image
|
|
@@ -64,11 +13,10 @@ import numpy as np
|
|
| 64 |
from PIL import Image
|
| 65 |
from scipy.fftpack import fft2
|
| 66 |
from tensorflow.keras.models import load_model, Model
|
| 67 |
-
import
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
mean_clf = pickle.load(f)
|
| 72 |
|
| 73 |
|
| 74 |
# Function to apply Fourier transform
|
|
@@ -113,7 +61,7 @@ def calculate_embeddings(image, model_path="embedding_modelv2.keras"):
|
|
| 113 |
def classify_image(image):
|
| 114 |
embeddings = calculate_embeddings(image)
|
| 115 |
# Convert to 2D array for model input
|
| 116 |
-
probabilities =
|
| 117 |
labels = ["Photo", "CGI"]
|
| 118 |
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities)}
|
| 119 |
|
|
|
|
| 6 |
Original file is located at
|
| 7 |
https://colab.research.google.com/drive/1ckzOtXUiFW_NqlIandwoH07lnsLGKTLB
|
| 8 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
from PIL import Image
|
|
|
|
| 13 |
from PIL import Image
|
| 14 |
from scipy.fftpack import fft2
|
| 15 |
from tensorflow.keras.models import load_model, Model
|
| 16 |
+
from xgboost import XGBClassifier
|
| 17 |
|
| 18 |
+
xgb_clf = XGBClassifier()
|
| 19 |
+
xgb_clf.load_model("xgb_cgi_classifier.json")
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# Function to apply Fourier transform
|
|
|
|
| 61 |
def classify_image(image):
|
| 62 |
embeddings = calculate_embeddings(image)
|
| 63 |
# Convert to 2D array for model input
|
| 64 |
+
probabilities = xgb_clf.predict_proba(embeddings)[0]
|
| 65 |
labels = ["Photo", "CGI"]
|
| 66 |
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities)}
|
| 67 |
|