Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor, CLIPModel, BlipForConditionalGeneration, CLIPProcessor, BlipProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import base64 | |
from PIL import Image, ImageDraw | |
from io import BytesIO | |
import re | |
models = { | |
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"), | |
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"), | |
torch_dtype="auto", device_map="auto"), | |
"openai/clip-vit-base-patch32": CLIPModel.from_pretrained("openai/clip-vit-base-patch32"), | |
"Salesforce/blip-image-captioning-base": BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
} | |
processors = { | |
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"), | |
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct"), | |
"openai/clip-vit-base-patch32": CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32"), | |
"Salesforce/blip-image-captioning-base": BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
} | |
def image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): | |
draw = ImageDraw.Draw(image) | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) | |
return image | |
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): | |
x_scale = original_width / scaled_width | |
y_scale = original_height / scaled_height | |
rescaled_boxes = [] | |
for box in bounding_boxes: | |
xmin, ymin, xmax, ymax = box | |
rescaled_box = [ | |
xmin * x_scale, | |
ymin * y_scale, | |
xmax * x_scale, | |
ymax * y_scale | |
] | |
rescaled_boxes.append(rescaled_box) | |
return rescaled_boxes | |
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-2B-Instruct"): | |
model = models[model_id].eval() | |
processor = processors[model_id] | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"}, | |
{"type": "text", "text": system_prompt}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
print(output_text) | |
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]' | |
matches = re.findall(pattern, str(output_text)) | |
parsed_boxes = [[int(num) for num in match] for match in matches] | |
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height) | |
return output_text | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# Qwen2-VL Object Detection Demo | |
Use the Qwen2-VL models to detect objects in an image. The 7B variant seems to work much better. | |
**Usage**: Use the keyword "detect" and a description of the target (see examples below). | |
""") | |
with gr.Tab(label="Qwen2-VL Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Image", type="pil") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct") | |
#system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt) | |
text_input = gr.Textbox(label="User Prompt") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
model_output_text = gr.Textbox(label="Model Output Text") | |
#parsed_boxes = gr.Textbox(label="Parsed Boxes") | |
#annotated_image = gr.Image(label="Annotated Image") | |
gr.Examples( | |
examples=[ | |
["assets/2024_09_10_10_58_23.png", "Solve the question"], | |
["assets/2024_09_10_10_58_40.png", "Solve the question"], | |
["assets/2024_09_10_11_07_31.png", "Solve the question"], | |
["assets/comics.jpeg", "Describe the scene"], | |
["assets/rescaled_IMG_3644.PNG", "Describe the scene"], | |
["assets/rescaled_IMG_4028.PNG", "Describe the scene"] | |
], | |
inputs=[input_img, text_input], | |
outputs=[model_output_text], | |
fn=run_example, | |
cache_examples=True, | |
label="Try examples" | |
) | |
submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text]) | |
demo.launch(debug=True) |