demo-vit-v2 / app.py
nhatipoglu's picture
Update app.py
8462782 verified
raw
history blame
5.85 kB
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor, CLIPModel, BlipForConditionalGeneration, CLIPProcessor, BlipProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re
models = {
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"),
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"),
torch_dtype="auto", device_map="auto"),
"openai/clip-vit-base-patch32": CLIPModel.from_pretrained("openai/clip-vit-base-patch32"),
"Salesforce/blip-image-captioning-base": BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
}
processors = {
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"),
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct"),
"openai/clip-vit-base-patch32": CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32"),
"Salesforce/blip-image-captioning-base": BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
}
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
draw = ImageDraw.Draw(image)
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
return image
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
x_scale = original_width / scaled_width
y_scale = original_height / scaled_height
rescaled_boxes = []
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
rescaled_box = [
xmin * x_scale,
ymin * y_scale,
xmax * x_scale,
ymax * y_scale
]
rescaled_boxes.append(rescaled_box)
return rescaled_boxes
@spaces.GPU
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-2B-Instruct"):
model = models[model_id].eval()
processor = processors[model_id]
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
{"type": "text", "text": system_prompt},
{"type": "text", "text": text_input},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
matches = re.findall(pattern, str(output_text))
parsed_boxes = [[int(num) for num in match] for match in matches]
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
return output_text
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Qwen2-VL Object Detection Demo
Use the Qwen2-VL models to detect objects in an image. The 7B variant seems to work much better.
**Usage**: Use the keyword "detect" and a description of the target (see examples below).
""")
with gr.Tab(label="Qwen2-VL Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
#system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt)
text_input = gr.Textbox(label="User Prompt")
submit_btn = gr.Button(value="Submit")
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
#parsed_boxes = gr.Textbox(label="Parsed Boxes")
#annotated_image = gr.Image(label="Annotated Image")
gr.Examples(
examples=[
["assets/2024_09_10_10_58_23.png", "Solve the question"],
["assets/2024_09_10_10_58_40.png", "Solve the question"],
["assets/2024_09_10_11_07_31.png", "Solve the question"],
["assets/comics.jpeg", "Describe the scene"],
["assets/rescaled_IMG_3644.PNG", "Describe the scene"],
["assets/rescaled_IMG_4028.PNG", "Describe the scene"]
],
inputs=[input_img, text_input],
outputs=[model_output_text],
fn=run_example,
cache_examples=True,
label="Try examples"
)
submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text])
demo.launch(debug=True)