FSub / gradio_app.py
nhantrungsp's picture
Update gradio_app.py
8ad7767 verified
raw
history blame
8.45 kB
import gradio as gr
import soundfile as sf
import tempfile
import torch
from vieneu_tts import VieNeuTTS
import os
import time
import threading
import pickle
import hashlib
import numpy as np
from pydub import AudioSegment
from fastapi import FastAPI, HTTPException
from fastapi.responses import FileResponse
from pydantic import BaseModel
import base64
import io
# --- KHỞI TẠO FASTAPI ---
app = FastAPI()
print("⏳ Đang khởi động VieNeu-TTS...")
# --- 1. SETUP MODEL ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🖥️ Sử dụng thiết bị: {device.upper()}")
# Cache
CACHE_DIR = "./reference_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
reference_cache = {}
reference_cache_lock = threading.Lock()
# Hàm Cache Helper
def get_cache_path(cache_key):
key_hash = hashlib.md5(cache_key.encode()).hexdigest()
return os.path.join(CACHE_DIR, f"{key_hash}.pkl")
def load_cache_from_disk(cache_key):
cache_path = get_cache_path(cache_key)
if os.path.exists(cache_path):
try:
with open(cache_path, 'rb') as f: return pickle.load(f)
except: return None
return None
def save_cache_to_disk(cache_key, ref_codes):
cache_path = get_cache_path(cache_key)
try:
with open(cache_path, 'wb') as f: pickle.dump(ref_codes, f)
except Exception: pass
# Load Model
try:
tts = VieNeuTTS(
backbone_repo="pnnbao-ump/VieNeu-TTS",
backbone_device=device,
codec_repo="neuphonic/neucodec",
codec_device=device
)
print("✅ Model đã tải xong!")
except Exception as e:
print(f"⚠️ Lỗi tải model: {e}")
tts = None
# --- 2. DATA ---
VOICE_SAMPLES = {
"Tuyên (nam miền Bắc)": {"audio": "./sample/Tuyên (nam miền Bắc).wav", "text": "./sample/Tuyên (nam miền Bắc).txt"},
"Vĩnh (nam miền Nam)": {"audio": "./sample/Vĩnh (nam miền Nam).wav", "text": "./sample/Vĩnh (nam miền Nam).txt"},
"Bình (nam miền Bắc)": {"audio": "./sample/Bình (nam miền Bắc).wav", "text": "./sample/Bình (nam miền Bắc).txt"},
"Nguyên (nam miền Nam)": {"audio": "./sample/Nguyên (nam miền Nam).wav", "text": "./sample/Nguyên (nam miền Nam).txt"},
"Sơn (nam miền Nam)": {"audio": "./sample/Sơn (nam miền Nam).wav", "text": "./sample/Sơn (nam miền Nam).txt"},
"Đoan (nữ miền Nam)": {"audio": "./sample/Đoan (nữ miền Nam).wav", "text": "./sample/Đoan (nữ miền Nam).txt"},
"Ngọc (nữ miền Bắc)": {"audio": "./sample/Ngọc (nữ miền Bắc).wav", "text": "./sample/Ngọc (nữ miền Bắc).txt"},
"Ly (nữ miền Bắc)": {"audio": "./sample/Ly (nữ miền Bắc).wav", "text": "./sample/Ly (nữ miền Bắc).txt"},
"Dung (nữ miền Nam)": {"audio": "./sample/Dung (nữ miền Nam).wav", "text": "./sample/Dung (nữ miền Nam).txt"},
"Nhỏ Ngọt Ngào": {"audio": "./sample/Nhỏ Ngọt Ngào.wav", "text": "./sample/Nhỏ Ngọt Ngào.txt"},
}
# --- 3. CORE LOGIC (Dùng chung cho cả API và UI) ---
def core_synthesize(text, voice_choice, speed_factor):
# Lấy thông tin giọng
voice_info = VOICE_SAMPLES.get(voice_choice)
if not voice_info:
raise ValueError("Giọng không tồn tại")
ref_audio_path = voice_info["audio"]
ref_text_path = voice_info["text"]
# Load reference text
with open(ref_text_path, "r", encoding="utf-8") as f:
ref_text_raw = f.read()
# Encode reference (Cache logic)
cache_key = f"preset:{voice_choice}"
with reference_cache_lock:
if cache_key in reference_cache:
ref_codes = reference_cache[cache_key]
else:
ref_codes = load_cache_from_disk(cache_key)
if ref_codes is None:
ref_codes = tts.encode_reference(ref_audio_path)
save_cache_to_disk(cache_key, ref_codes)
reference_cache[cache_key] = ref_codes
# Infer
wav = tts.infer(text, ref_codes, ref_text_raw)
# Speed
if speed_factor != 1.0:
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp:
sf.write(tmp.name, wav, 24000)
tmp_path = tmp.name
sound = AudioSegment.from_wav(tmp_path)
new_frame_rate = int(sound.frame_rate * speed_factor)
sound_stretched = sound._spawn(sound.raw_data, overrides={'frame_rate': new_frame_rate})
sound_stretched = sound_stretched.set_frame_rate(24000)
wav = np.array(sound_stretched.get_array_of_samples()).astype(np.float32) / 32768.0
if sound_stretched.channels == 2:
wav = wav.reshape((-1, 2)).mean(axis=1)
os.unlink(tmp_path)
return wav
# --- 4. API ENDPOINTS (Cho Client App kết nối) ---
class FastTTSRequest(BaseModel):
text: str
voice_choice: str
speed_factor: float = 1.0
return_base64: bool = False
@app.get("/voices")
async def get_voices():
return {"voices": list(VOICE_SAMPLES.keys())}
@app.post("/fast-tts")
async def fast_tts(request: FastTTSRequest):
try:
start = time.time()
wav = core_synthesize(request.text, request.voice_choice, request.speed_factor)
process_time = time.time() - start
# Convert to Base64
audio_buffer = io.BytesIO()
sf.write(audio_buffer, wav, 24000, format='WAV')
audio_bytes = audio_buffer.getvalue()
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
return {
"status": "success",
"audio_base64": audio_base64,
"processing_time": process_time
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# --- 5. GRADIO UI SETUP ---
# Dùng theme Soft để tránh lỗi
theme = gr.themes.Soft()
# CSS
css = ".container { max-width: 900px; margin: auto; }"
def ui_synthesize(text, voice, custom_audio, custom_text, mode, speed):
try:
start = time.time()
# Logic riêng cho UI (hỗ trợ custom voice)
if mode == "custom_mode":
ref_audio_path = custom_audio
ref_text_raw = custom_text
ref_codes = tts.encode_reference(ref_audio_path) # Không cache custom
wav = tts.infer(text, ref_codes, ref_text_raw)
# (Bỏ qua speed control cho custom để code gọn)
else:
wav = core_synthesize(text, voice, speed)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
sf.write(tmp.name, wav, 24000)
path = tmp.name
return path, f"✅ Xong! ({time.time()-start:.2f}s)"
except Exception as e:
return None, f"❌ Lỗi: {e}"
with gr.Blocks(theme=theme, css=css, title="VieNeu-TTS") as demo:
gr.Markdown("# 🎙️ VieNeu-TTS (API + UI)")
with gr.Row():
with gr.Column():
inp_text = gr.Textbox(label="Văn bản", lines=3, value="Xin chào Việt Nam")
with gr.Tabs() as tabs:
with gr.TabItem("Giọng mẫu", id="preset_mode"):
inp_voice = gr.Dropdown(list(VOICE_SAMPLES.keys()), value="Tuyên (nam miền Bắc)", label="Chọn giọng")
with gr.TabItem("Custom", id="custom_mode"):
inp_audio = gr.Audio(type="filepath")
inp_ref_text = gr.Textbox(label="Lời thoại mẫu")
inp_speed = gr.Slider(0.5, 2.0, value=1.0, label="Tốc độ")
btn = gr.Button("Đọc ngay", variant="primary")
with gr.Column():
out_audio = gr.Audio(label="Kết quả", autoplay=True)
out_status = gr.Textbox(label="Trạng thái")
# Ẩn hiện mode
mode_state = gr.Textbox(visible=False, value="preset_mode")
tabs.children[0].select(lambda: "preset_mode", None, mode_state)
tabs.children[1].select(lambda: "custom_mode", None, mode_state)
btn.click(ui_synthesize, [inp_text, inp_voice, inp_audio, inp_ref_text, mode_state, inp_speed], [out_audio, out_status])
# --- 6. MOUNT GRADIO VÀO FASTAPI ---
# Đây là bước quan trọng nhất để chạy cả 2 cùng lúc
app = gr.mount_gradio_app(app, demo, path="/")
# --- 7. CHẠY SERVER ---
if __name__ == "__main__":
import uvicorn
# Chạy uvicorn thay vì demo.launch()
uvicorn.run(app, host="0.0.0.0", port=7860)