Spaces:
Sleeping
Sleeping
nguyennghia0902
commited on
Commit
•
b336ee6
1
Parent(s):
8821400
Update QuestionAnswering.py
Browse files- QuestionAnswering.py +5 -5
QuestionAnswering.py
CHANGED
@@ -3,7 +3,7 @@ import streamlit as st
|
|
3 |
import tensorflow as tf
|
4 |
from transformers import ElectraTokenizerFast, TFElectraForQuestionAnswering
|
5 |
|
6 |
-
model_hf =
|
7 |
tokenizer = ElectraTokenizerFast.from_pretrained(model_hf)
|
8 |
reload_model = TFElectraForQuestionAnswering.from_pretrained(model_hf)
|
9 |
|
@@ -27,7 +27,7 @@ def main():
|
|
27 |
col1, col2 = st.columns([2, 1])
|
28 |
col1.title("Question Answering")
|
29 |
|
30 |
-
col2.link_button("Explore my model",
|
31 |
|
32 |
question = st.text_area(
|
33 |
"QUESTION: Please enter a question:",
|
@@ -42,16 +42,16 @@ def main():
|
|
42 |
|
43 |
prediction = ""
|
44 |
|
45 |
-
upload_file = st.file_uploader("CONTEXT: Or upload a file with some
|
46 |
if upload_file is not None:
|
47 |
-
|
48 |
|
49 |
for line in text.splitlines():
|
50 |
line = line.strip()
|
51 |
if not line:
|
52 |
continue
|
53 |
|
54 |
-
prediction = predict(
|
55 |
|
56 |
st.success(line + "\n\n" + prediction)
|
57 |
|
|
|
3 |
import tensorflow as tf
|
4 |
from transformers import ElectraTokenizerFast, TFElectraForQuestionAnswering
|
5 |
|
6 |
+
model_hf = "nguyennghia0902/bestfailed_electra-small-discriminator_5e-05_16"
|
7 |
tokenizer = ElectraTokenizerFast.from_pretrained(model_hf)
|
8 |
reload_model = TFElectraForQuestionAnswering.from_pretrained(model_hf)
|
9 |
|
|
|
27 |
col1, col2 = st.columns([2, 1])
|
28 |
col1.title("Question Answering")
|
29 |
|
30 |
+
col2.link_button("Explore my model", "https://huggingface.co/"+model_hf)
|
31 |
|
32 |
question = st.text_area(
|
33 |
"QUESTION: Please enter a question:",
|
|
|
42 |
|
43 |
prediction = ""
|
44 |
|
45 |
+
upload_file = st.file_uploader("CONTEXT: Or upload a file with some questions", type=["txt"])
|
46 |
if upload_file is not None:
|
47 |
+
question = upload_file.read().decode("utf-8")
|
48 |
|
49 |
for line in text.splitlines():
|
50 |
line = line.strip()
|
51 |
if not line:
|
52 |
continue
|
53 |
|
54 |
+
prediction = predict(line, text)
|
55 |
|
56 |
st.success(line + "\n\n" + prediction)
|
57 |
|