ngebodh commited on
Commit
aa78c01
1 Parent(s): f62cd4f
Files changed (1) hide show
  1. app.py +62 -24
app.py CHANGED
@@ -1,9 +1,4 @@
1
- """ Simple Chatbot
2
- @author: Nigel Gebodh
3
- @email: nigel.gebodh@gmail.com
4
-
5
- """
6
-
7
  import streamlit as st
8
  from openai import OpenAI
9
  import os
@@ -26,17 +21,17 @@ client = OpenAI(
26
 
27
  #Create supported models
28
  model_links ={
29
- "Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
30
- "Gemma-7B":"google/gemma-7b-it",
31
- "Gemma-2B":"google/gemma-2b-it",
 
32
  "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
33
- # "Llama-2":"meta-llama/Llama-2-7b-chat-hf"
34
 
35
  }
36
 
37
  #Pull info about the model to display
38
  model_info ={
39
- "Mistral":
40
  {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
41
  \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
42
  'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
@@ -64,9 +59,30 @@ model_info ={
64
  is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
65
  that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
66
  'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
67
-
 
 
 
68
  }
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  def reset_conversation():
71
  '''
72
  Resets Conversation
@@ -98,6 +114,8 @@ st.sidebar.markdown(model_info[selected_model]['description'])
98
  st.sidebar.image(model_info[selected_model]['logo'])
99
  st.sidebar.markdown("*Generated content may be inaccurate or false.*")
100
  st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
 
 
101
 
102
 
103
 
@@ -147,16 +165,36 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
147
 
148
  # Display assistant response in chat message container
149
  with st.chat_message("assistant"):
150
- stream = client.chat.completions.create(
151
- model=model_links[selected_model],
152
- messages=[
153
- {"role": m["role"], "content": m["content"]}
154
- for m in st.session_state.messages
155
- ],
156
- temperature=temp_values,#0.5,
157
- stream=True,
158
- max_tokens=3000,
159
- )
160
-
161
- response = st.write_stream(stream)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  st.session_state.messages.append({"role": "assistant", "content": response})
 
1
+ mport numpy as np
 
 
 
 
 
2
  import streamlit as st
3
  from openai import OpenAI
4
  import os
 
21
 
22
  #Create supported models
23
  model_links ={
24
+ "Meta-Llama-3-8B":"meta-llama/Meta-Llama-3-8B-Instruct",
25
+ "Mistral-7B":"mistralai/Mistral-7B-Instruct-v0.2",
26
+ "Gemma-7B":"google/gemma-1.1-7b-it",
27
+ "Gemma-2B":"google/gemma-1.1-2b-it",
28
  "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
 
29
 
30
  }
31
 
32
  #Pull info about the model to display
33
  model_info ={
34
+ "Mistral-7B":
35
  {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
36
  \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
37
  'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
 
59
  is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
60
  that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
61
  'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
62
+ "Meta-Llama-3-8B":
63
+ {'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
64
+ \nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
65
+ 'logo':'Llama_logo.png'},
66
  }
67
 
68
+
69
+ #Random dog images for error message
70
+ random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
71
+ "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
72
+ "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
73
+ "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
74
+ "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
75
+ "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
76
+ "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
77
+ "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
78
+ "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
79
+ "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
80
+ "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
81
+ "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
82
+ "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]
83
+
84
+
85
+
86
  def reset_conversation():
87
  '''
88
  Resets Conversation
 
114
  st.sidebar.image(model_info[selected_model]['logo'])
115
  st.sidebar.markdown("*Generated content may be inaccurate or false.*")
116
  st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
117
+ st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).")
118
+
119
 
120
 
121
 
 
165
 
166
  # Display assistant response in chat message container
167
  with st.chat_message("assistant"):
168
+
169
+ try:
170
+ stream = client.chat.completions.create(
171
+ model=model_links[selected_model],
172
+ messages=[
173
+ {"role": m["role"], "content": m["content"]}
174
+ for m in st.session_state.messages
175
+ ],
176
+ temperature=temp_values,#0.5,
177
+ stream=True,
178
+ max_tokens=3000,
179
+ )
180
+
181
+ response = st.write_stream(stream)
182
+
183
+ except Exception as e:
184
+ # st.empty()
185
+ response = "😵‍💫 Looks like someone unplugged something!😵‍💫\
186
+ \n Either the model space is being updated or something is down.\
187
+ \n\
188
+ \n Try again later. \
189
+ \n\
190
+ \n Here's a random pic of a 🐶:"
191
+ st.write(response)
192
+ random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
193
+ st.image(random_dog_pick)
194
+ st.write("This was the error message:")
195
+ st.write(e)
196
+
197
+
198
+
199
+
200
  st.session_state.messages.append({"role": "assistant", "content": response})