ngaggion's picture
First push
e87a462
raw
history blame
7.02 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.modelUtils import ChebConv, Pool, residualBlock
import torchvision.ops.roi_align as roi_align
import numpy as np
class EncoderConv(nn.Module):
def __init__(self, latents = 64, hw = 32):
super(EncoderConv, self).__init__()
self.latents = latents
self.c = 4
self.size = self.c * np.array([2,4,8,16,32], dtype = np.intc)
self.maxpool = nn.MaxPool2d(2)
self.dconv_down1 = residualBlock(1, self.size[0])
self.dconv_down2 = residualBlock(self.size[0], self.size[1])
self.dconv_down3 = residualBlock(self.size[1], self.size[2])
self.dconv_down4 = residualBlock(self.size[2], self.size[3])
self.dconv_down5 = residualBlock(self.size[3], self.size[4])
self.dconv_down6 = residualBlock(self.size[4], self.size[4])
self.fc_mu = nn.Linear(in_features=self.size[4]*hw*hw, out_features=self.latents)
self.fc_logvar = nn.Linear(in_features=self.size[4]*hw*hw, out_features=self.latents)
def forward(self, x):
x = self.dconv_down1(x)
x = self.maxpool(x)
x = self.dconv_down2(x)
x = self.maxpool(x)
conv3 = self.dconv_down3(x)
x = self.maxpool(conv3)
conv4 = self.dconv_down4(x)
x = self.maxpool(conv4)
conv5 = self.dconv_down5(x)
x = self.maxpool(conv5)
conv6 = self.dconv_down6(x)
x = conv6.view(conv6.size(0), -1) # flatten batch of multi-channel feature maps to a batch of feature vectors
x_mu = self.fc_mu(x)
x_logvar = self.fc_logvar(x)
return x_mu, x_logvar, conv6, conv5
class SkipBlock(nn.Module):
def __init__(self, in_filters, window):
super(SkipBlock, self).__init__()
self.window = window
self.graphConv_pre = ChebConv(in_filters, 2, 1, bias = False)
def lookup(self, pos, layer, salida = (1,1)):
B = pos.shape[0]
N = pos.shape[1]
F = layer.shape[1]
h = layer.shape[-1]
## Scale from [0,1] to [0, h]
pos = pos * h
_x1 = (self.window[0] // 2) * 1.0
_x2 = (self.window[0] // 2 + 1) * 1.0
_y1 = (self.window[1] // 2) * 1.0
_y2 = (self.window[1] // 2 + 1) * 1.0
boxes = []
for batch in range(0, B):
x1 = pos[batch,:,0].reshape(-1, 1) - _x1
x2 = pos[batch,:,0].reshape(-1, 1) + _x2
y1 = pos[batch,:,1].reshape(-1, 1) - _y1
y2 = pos[batch,:,1].reshape(-1, 1) + _y2
aux = torch.cat([x1, y1, x2, y2], axis = 1)
boxes.append(aux)
skip = roi_align(layer, boxes, output_size = salida, aligned=True)
vista = skip.view([B, N, -1])
return vista
def forward(self, x, adj, conv_layer):
pos = self.graphConv_pre(x, adj)
skip = self.lookup(pos, conv_layer)
return torch.cat((x, skip, pos), axis = 2), pos
class Hybrid(nn.Module):
def __init__(self, config, downsample_matrices, upsample_matrices, adjacency_matrices):
super(Hybrid, self).__init__()
self.config = config
hw = config['inputsize'] // 32
self.z = config['latents']
self.encoder = EncoderConv(latents = self.z, hw = hw)
self.downsample_matrices = downsample_matrices
self.upsample_matrices = upsample_matrices
self.adjacency_matrices = adjacency_matrices
self.kld_weight = 1e-5
n_nodes = config['n_nodes']
self.filters = config['filters']
self.K = 6
self.window = (3,3)
# Genero la capa fully connected del decoder
outshape = self.filters[-1] * n_nodes[-1]
self.dec_lin = torch.nn.Linear(self.z, outshape)
self.normalization2u = torch.nn.InstanceNorm1d(self.filters[1])
self.normalization3u = torch.nn.InstanceNorm1d(self.filters[2])
self.normalization4u = torch.nn.InstanceNorm1d(self.filters[3])
self.normalization5u = torch.nn.InstanceNorm1d(self.filters[4])
self.normalization6u = torch.nn.InstanceNorm1d(self.filters[5])
outsize1 = self.encoder.size[4]
outsize2 = self.encoder.size[4]
# Guardo las capas de convoluciones en grafo
self.graphConv_up6 = ChebConv(self.filters[6], self.filters[5], self.K)
self.graphConv_up5 = ChebConv(self.filters[5], self.filters[4], self.K)
self.SC_1 = SkipBlock(self.filters[4], self.window)
self.graphConv_up4 = ChebConv(self.filters[4] + outsize1 + 2, self.filters[3], self.K)
self.graphConv_up3 = ChebConv(self.filters[3], self.filters[2], self.K)
self.SC_2 = SkipBlock(self.filters[2], self.window)
self.graphConv_up2 = ChebConv(self.filters[2] + outsize2 + 2, self.filters[1], self.K)
self.graphConv_up1 = ChebConv(self.filters[1], self.filters[0], 1, bias = False)
self.pool = Pool()
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.normal_(self.dec_lin.weight, 0, 0.1)
def sampling(self, mu, log_var):
std = torch.exp(0.5*log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def forward(self, x):
self.mu, self.log_var, conv6, conv5 = self.encoder(x)
if self.training:
z = self.sampling(self.mu, self.log_var)
else:
z = self.mu
x = self.dec_lin(z)
x = F.relu(x)
x = x.reshape(x.shape[0], -1, self.filters[-1])
x = self.graphConv_up6(x, self.adjacency_matrices[5]._indices())
x = self.normalization6u(x)
x = F.relu(x)
x = self.graphConv_up5(x, self.adjacency_matrices[4]._indices())
x = self.normalization5u(x)
x = F.relu(x)
x, pos1 = self.SC_1(x, self.adjacency_matrices[3]._indices(), conv6)
x = self.graphConv_up4(x, self.adjacency_matrices[3]._indices())
x = self.normalization4u(x)
x = F.relu(x)
x = self.pool(x, self.upsample_matrices[0])
x = self.graphConv_up3(x, self.adjacency_matrices[2]._indices())
x = self.normalization3u(x)
x = F.relu(x)
x, pos2 = self.SC_2(x, self.adjacency_matrices[1]._indices(), conv5)
x = self.graphConv_up2(x, self.adjacency_matrices[1]._indices())
x = self.normalization2u(x)
x = F.relu(x)
x = self.graphConv_up1(x, self.adjacency_matrices[0]._indices()) # Sin relu y sin bias
return x, pos1, pos2